Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne2;x\ne0\)
a) \(E=\frac{x^2}{x-2}\cdot\left(\frac{x^2+4}{x}-4\right)+3\)
\(E=\frac{x^2}{x-2}\cdot\left(\frac{x^2+4-4x}{x}\right)+3\)
\(E=\frac{x^2}{x-2}\cdot\frac{\left(x-2\right)^2}{x}+3\)
\(E=\frac{x^2\left(x-2\right)^2}{\left(x-2\right)x}+3\)
\(E=x\left(x-2\right)+3\)
b) Để E = 2 thì \(x\left(x-2\right)+3=2\)
\(\Leftrightarrow x^2-2x+3-2=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
c) Ta có :
\(E=x\left(x-2\right)+3\)
\(E=x^2-2x+3\)
\(E=x^2-2x+1+2\)
\(E=\left(x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(E=\left(\frac{x-2}{x^2-1}-\frac{x+2}{x^2+2x+1}\right).\left(\frac{1-x^2}{2}\right)^2\)
\(E=\left(\frac{x-2}{\left(x-1\right)\left(x+1\right)}-\frac{x-2}{\left(x+1\right)^2}\right).\left(\frac{\left(1-x\right)\left(1+x\right)}{2}\right)^2\)
\(E=\left(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)^2}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}\right).\frac{\left(1-x\right)^2\left(x+1\right)^2}{4}\)
\(E=\frac{\left(x-2\right)\left(x+1-x+1\right)}{\left(x-1\right)\left(x+1\right)^2}.\frac{\left(x-1\right)^2\left(x+1\right)^2}{4}\)
\(E=\frac{2\left(x-2\right)\left(x-1\right)}{4}\)
\(E=\frac{\left(x-2\right)\left(x-1\right)}{2}\)
a) \(E=\left(\frac{x-2}{x^2-1}-\frac{x+2}{x^2+2x+1}\right).\left(\frac{1-x^2}{2}\right)^2\)
\(=\left(\frac{x-2}{\left(x-1\right)\left(x+1\right)}-\frac{x+2}{\left(x+1\right)^2}\right).\frac{\left(x^2-1\right)^2}{4}\)
\(=\left(\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\right).\frac{\left(x^2-1\right)^2}{4}\)
\(=\left(\frac{x^2-3x+2-x^2-3x-2}{\left(x-1\right)^2\left(x+1\right)}\right).\frac{\left(x^2-1\right)^2}{4}\)
\(=\frac{-6x.\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+1\right).4}=\frac{-3x\left(x^2-1\right)^2}{\left(x^2-1\right)\left(x-1\right).4}=\frac{-3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right).4}\)\(=\frac{-3x\left(x+1\right)}{4}\)
b) Muốn \(\frac{E-4}{5}=x\) thì \(\frac{\frac{-3x\left(x+1\right)}{4}-4}{5}=x\)
\(\Rightarrow\frac{\frac{-3x^2\left(x+1\right)}{4}-\frac{16}{4}}{5}=x\)
\(\Rightarrow\frac{-3x^3-3x^2-16}{4}=5x\)
\(\Rightarrow-3x^3-3x^2-16=20x\)
\(\Rightarrow-3x^3-3x^2-16=20x\).....................................................................
Bài 2 :
a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)
\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)
\(A=\frac{x-2}{x+2}\)
c) Thay x = 4 ta có :
\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)
Vậy.........
\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)
\(\left(5x-2\right)\left(25x^2+10x+4\right)\)
\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)
\(=\left(5x\right)^3-2^3\)
\(=125x^3-8\)
\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)( \(ĐK:x\ne2;x\ne0\))
\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)
\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)
b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)
Vậy GTNN của E là 2 khi x = 1