K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

a, Thay x=-3 vào A ta có:

\(A=2x^2-6x=2.\left(-3\right)^2-6.\left(-3\right)=2.9+6.3=18+18=39\)

Thay x=4 vào A ta có:

\(A=2x^2-6x=2.4^2-6.4=2.16-24=32-24=8\)

b, \(A=0\)

\(\Leftrightarrow2x^2-6x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c, \(A=4x\)

\(\Leftrightarrow2x^2-6x=4x\\ \Leftrightarrow2x^2-10x=0\\ \Leftrightarrow2x\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

4 tháng 3 2022

a, Thay x = -3 vào A ta được 

\(A=2.9-6.4=18-24=-6\)

Thay x = 4 vào A ta được 

\(A=2.16-6.4=32-24=6\)

b, Ta có \(A=2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)

c, Ta có \(A=2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Leftrightarrow x=0;x=5\)

18 tháng 2 2019

1 ) a) \(4x^2-x^2+8x^2\)

\(=\left(4+8\right).x^2+x^2-x^2\)

\(=12.x^3\)

b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)

\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)

\(=-\frac{1}{4}.x^6+y^6\)

c) \(3y-7y+4y-6y\)

\(=\left(3-7+4-6\right).y.y.y.y\)

\(=-6.y^4\)

18 tháng 2 2019

2) 

\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)

\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)

\(=\frac{25}{6}.y^5\)

b) \(5x^3-3x^2+x-x^3-4x^2-x\)

\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)

\(=-2.0=0\)

hông chắc

3)a)  \(5xy^2.\frac{1}{2}x^2y^2x\)

\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)

\(=\frac{5}{2}.x^5.y^4\)

b) Tổng các bậc của đơn thức là

5+4 = 9

Hệ số của đơn thức là \(\frac{5}{2}\)

Phần biến là x;y

Thay x=1;y=-1 vào đơn thức

\(\frac{5}{2}.1^5.\left(-1\right)^4\)

\(\frac{5}{2}.1.\left(-1\right)\)

\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)

Vậy ....

chắc không đúng đâu uwu

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

21 tháng 12 2016

chỉ trả cần trả lời câu b bài 4 thôi

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

\(A\left(x\right)=5x^3+3x^2-x-7\)

\(B\left(x\right)=7x^3-3x+4\)

=>\(5x^3+3x^2-x-7=7x^3-3x+4\)

\(\Leftrightarrow-2x^3+3x^2+2x-11=0\)

hay \(x\in\left\{-1.52\right\}\)