Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán Tuổi Thơ 2 số 178 Bài 6 chứ gì
Ta có:\(xy+yz+zx+x+y+z\)
\(=xyz+xy+yz+zx+x+y+z+1-xyz-1\)
\(=xy\left(z+1\right)+x\left(z+1\right)+y\left(z+1\right)+\left(z+1\right)-xyz-1\)
\(=\left(xy+x+y+1\right)\left(z+1\right)-xyz-1\)
\(=\left[x\left(y+1\right)+\left(y+1\right)\right]\left(z+1\right)-xyz-1\)
\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)-xyz-1\)
Lần lượt thay \(x=\frac{b}{a-b};y=\frac{c}{b-c};z=\frac{a}{c-a}\) vào ta có:
\(xy+yz+zx+x+y+z\)
\(=\left(\frac{b}{a-b}+1\right)\left(\frac{c}{b-c}+1\right)\left(\frac{a}{c-a}+1\right)-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)
\(=\frac{a}{a-b}.\frac{b}{b-c}.\frac{c}{c-a}-\frac{b}{a-b}.\frac{c}{b-c}.\frac{a}{c-a}-1\)
\(=-1\)
Vậy giá trị của \(xy+yz+zx+x+y+z\) không phụ thuộc vào a,b,c
với xyz=2009, thay vào, ta có
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
=\(\frac{xz}{1+zx+y}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}=1\)
=> ... k phụ thuộc vào x,y,z(ĐPCM)
^_^
1.
Ta có x+y+z=0
=>x+y=-z; x+z=-y; y+z=-x.
\(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)\(=-\frac{xyz}{xyz}=-1\)
2) a+b+c=0 <=> (a+b+c)^2=0
<=> a^2+b^2+c^2+2(ab+bc+ca)=0
VT >= ab+bc+ca+2(ab+bc+ca)
=> 0 >= 3(ab+bc+ca)
<=> 0 >= (ab+bc+ca)
Dấu "=" xảy ra khi a=b=c=0
\(P=\left(x^2-y\right)\left(y^2-z^2\right)\left(z^2-x\right)=abc\)
Ta có: \(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(=x^3\left(z-y^2\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(=x^3\left(z-y^2\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)-\left(x^2z^3-x^2y^2z^2\right)\)
\(=x^3\left(z-y^2\right)+xy\left(y^2-z\right)-yz^2\left(y^2-z\right)-x^2z^2\left(z-y^2\right)\)
\(=\left(y^2-z\right)\left(-x^3+xy-yz^2+x^2z^2\right)\)
\(=\left(y^2-z\right)\left[\left(-x^3+xy\right)-\left(yz^2-x^2z^2\right)\right]\)
\(=\left(y^2-z\right)\left[x\left(-x^2+y\right)-z^2\left(y-x^2\right)\right]\)
\(=\left(y^2-z\right)\left(x-z^2\right)\left(y-x^2\right)\)
\(=b.\left(-c\right).\left(-a\right)=abc\)
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của các biến x,y,z
P = 1/y-1/x+1/z-1/y+1/x-1/z = 0
=> ĐPCM
k mk nha
Còn cái Q hình như đề sai
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>
Ta có C = x(y + z) – y(z + x) – z(x – y)
= xy + xz – yz – xy – zx + zy
= (xy – xy) + (zy – zy) + (xz – zx) = 0
Nên C không phụ thuộc vào x; y; z
Đáp án cần chọn là: A