Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x-2}{x+2}-\frac{x+2}{2-x}-\frac{x^2-3x+6}{x^2-4}\right):\left(1-\frac{3}{x-2}\right)\)
\(=\left(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x^2-3x+6}{\left(x-2\right)\left(x+2\right)}\right)\)\(:\left(\frac{x-2}{x-2}-\frac{3}{x-2}\right)\)
\(=\frac{x^2-4x+4+x^2+4x+4-x^2+3x-6}{\left(x+2\right)\left(x-2\right)}:\frac{x-2-3}{x-2}\)
\(=\frac{x^2+3x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x-5}{x-2}\)
\(=\frac{x^2+x+2x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x-5}{x-2}\).
\(=\frac{x\left(x+1\right)+2\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x-5}\)
\(=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x-5}\)
\(=\frac{x+1}{x-2}.\frac{x-2}{x-5}\)
\(=\frac{x+1}{x-5}\)
.
\(1,ĐK:x\ne0;x\ne\pm6\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)
\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
a) A = \(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
A = \(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{x+2}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
A = \(\left[\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
A = \(-\frac{6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
A = \(-\frac{6\left(x+2\right)}{6\left(x-2\right)\left(x+2\right)}\)
A = \(-\frac{6}{6\left(x-2\right)}\)
A = \(-\frac{1}{x-2}\)
b) |x| = \(\hept{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
+) với x = 1/2, ta có:
A = \(-\frac{1}{\frac{1}{2}-2}=\frac{2}{3}\)
+) với x = -1/2, ta có:
A = \(-\frac{1}{\left(-\frac{1}{2}\right)-2}=\frac{2}{5}\)
\(A=\left(\dfrac{1}{x-2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right)\cdot\dfrac{2-x}{x}\)
\(=\dfrac{x+2+2x+x-2}{-\left(2-x\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)
\(=\dfrac{4x}{-\left(x+2\right)\cdot x}=\dfrac{-4}{x+2}\)
ĐK: x khác +-2
\(C=\left(\frac{2}{x+2}-\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-2}\right).\left(\frac{x-2}{x^2-4+6-x^2}\right)\\ \)
\(C=\frac{2\left(x-2\right)-x+\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.\left(\frac{x-2}{2}\right)=\frac{2\left(x-1\right)\left(x-2\right)}{2.\left(x-2\right)\left(x+2\right)}\)
\(C=\frac{x-1}{x+2}\)
C=[2/(x+2)-x/(x^2-4)-1/(2-x)]:[x+2+(6-x^2)/(x-2)]
=[2/(x+2)-x/(x-2)(x+2)-(-1)/(x-2)]:[x+2+(6-x^2)/(x-2)]
=[2x-4-x+x+2/(x-2)(x+2)]:[(x^2-4+6-x^2)/(x-2)]
=2x-2/(x-2)(x+2) . (x-2)/2
=2(x-1)/(x-2)(x+2) . (x-2)/2
=x-1/x+2