K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

\(B=\left(\frac{x}{x+1}+\frac{x-1}{x}\right)\div\left(\frac{x}{x+1}-\frac{x-1}{x}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(=\left(\frac{x^2}{x\left(x+1\right)}+\frac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\right)\div\left(\frac{x^2}{x\left(x+1\right)}-\frac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\right)\)

\(=\left(\frac{x^2+x^2-1}{x\left(x+1\right)}\right)\div\left(\frac{x^2-x^2+1}{x\left(x+1\right)}\right)\)

\(=\frac{2x^2-1}{x\left(x+1\right)}\times\frac{x\left(x+1\right)}{1}=2x^2-1\)

Để B = 1 => 2x2 - 1 = 1

=> 2x2 - 1 - 1 = 0

=> 2x2 - 2 = 0

=> 2( x2 - 1 ) = 0

=> 2( x - 1 )( x + 1 ) = 0

=> x - 1 = 0 hoặc x + 1 = 0

=> x = 1 ( tm ) hoặc x = -1 ( ktm )

Vậy x = 1 thì B = 1

30 tháng 12 2022

\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}\)

a)

Để giá trị của biểu thức P được xác định, thì :

 \(\left[{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-2\\x\ne-2;2\end{matrix}\right.\)

Vậy ĐKXĐ của biểu thức P là : \(x\ne\left\{2;-2\right\}\)

b)

\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}=\left(\dfrac{x}{x-2}-\dfrac{x-2}{x+2}\right):\dfrac{1}{x^2-4}=\left(\dfrac{x\left(x+2\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2-4}{1}\)

\(=\dfrac{x^2+2x-x^2+2x-4}{x^2-4}.\dfrac{x^2-4}{1}=\dfrac{4x-4}{x^2-4}.\dfrac{x^2-4}{1}=4x-4\)

c)

Để : 

\(P=0\Rightarrow4x-4=0\)

\(\Rightarrow4\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Vậy.....

 

19 tháng 7 2020

a)ĐKXĐ:  x khác 1;-1

              x khác 0

b) A=[( x+1)(x+1)/(x-1)(x+1) - (x-1)(x-1)/(x+1)(x-1) + (x2 - 4x - 1)/(x-1)(x+1)] *x+2006/x

= x2+2x+1-(x2-2x+1) +x2-4x-1/(x-1)(x+1)*x+2006/x

=x2-1/x2-1*x+2006/x

=x+2006/x

c)Bó tay :))

4 tháng 1 2022

a) \(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)

a) \(ĐKXĐ:\) x khác + 3

\(b,P=\dfrac{3\left(x-3\right)+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

\(P=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

\(P=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)

\(P=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(P=\dfrac{4}{x-3}\)

c) \(P=4=\dfrac{4}{x-3}=4=x-3=1=x=4\)

a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

b: \(P=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)

c: Để P=4 thì x-3=1

hay x=4

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(P=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2x+2}\)

4 tháng 1 2022

a: ĐKXĐ: x∉{1;−1}x∉{1;−1}

b: P=x2(x−1)−x2+12(x−1)(x+1)=x2+x−x2−12(x−1)(x+1)=12x+2P=x2(x−1)−x2+12(x−1)(x+1)=x2+x−x2−12(x−1)(x+1)=12x+2

28 tháng 11 2019

a) Giá trị của biểu thức A đã co xác định 

\(\Leftrightarrow\hept{\begin{cases}x^2+x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)\ne0\\x\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)

Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)thì giá trị của biểu thức A đã cho được xác định .

ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

b)

+) \(A=\left(\frac{1}{x^2+x}+\frac{1}{x+1}\right).x^2\)

\(A=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{x+1}\right).x^2\)

\(A=\frac{1+x}{x\left(x+1\right)}.x^2\)

\(A=\frac{1}{x}.x^2=x\)

+) 

Ta có :

\(A\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

<=> x = 0 ( không thỏa mãn ĐKXĐ) hoặc x = 1( thỏa mãn ĐKXĐ) hoặc x = -1 ( Không thỏa mãn ĐKXĐ)

Vậy với x = 1 thì \(A\left(x^2-1\right)=0\)

28 tháng 11 2019

\(a.ĐKXĐ:\hept{\begin{cases}x^2+x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)\ne0\\x\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0vax\ne-1\\x\ne-1\end{cases}\Leftrightarrow}x\ne0vax\ne-1}\)

\(A=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{x+1}\right).x^2\)

\(=\frac{1+1x}{x\left(x+1\right)}.x^2\)

\(=\frac{1+1x}{x^2+x}.x^2\)

\(=\frac{1+1x}{x}\) với \(x\ne0\)và \(x\ne-1\)

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c: Thay x=-2 vào A, ta được:

\(A=\dfrac{-2-1}{-2+1}=\dfrac{-3}{-1}=3\)

28 tháng 6 2023

Xem lại biểu thức P.

28 tháng 6 2023

loading...

Mình phải đi ăn nên chiều mình làm nốt câu d nhé

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3