Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)
Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )
\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)
\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)
Có:
\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)
\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)
B)
\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)
\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)
\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$
T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)
\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)
1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)
\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)
c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
Vậy \(x>4\)thì \(R>0\)
2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)
Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)
3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)
b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)
a: \(=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{yx}\)
b: \(=\sqrt{\dfrac{-105x^3}{35^2}}=\sqrt{-105x}\cdot\dfrac{x}{35}\)
c: \(=\sqrt{\dfrac{5a^3b}{49b^2}}=\sqrt{5ab}\cdot\dfrac{a}{7b}\)
d: \(=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3}\cdot\sqrt{xy}\)
a)\(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}=\sqrt{3}\left(\sqrt{3}-1\right)-\sqrt{15}\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{15}\right)=\sqrt{3}\left(\sqrt{3}-1\right)\left(1-\sqrt{5}\right)\)\(\)b)\(\sqrt{1-a}+\sqrt{1-a^2}=\sqrt{1-a}.1+\sqrt{1-a}.\sqrt{1+a}=\sqrt{1-a}\left(\sqrt{1+a}+1\right)\)
c)\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b+\sqrt{ab}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+2\sqrt{ab}+b\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)
Mk làm từng câu nhé !
a)\(A=\frac{x-\sqrt{x}}{x-1}\left(đk:x\ge0,x\ne1\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)(vì \(x\ge0\))
\(=\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(B=\frac{x-4}{x+2\sqrt{x}}\left(đk:x>0,x\ne4\right)\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=1+\frac{2}{\sqrt{x}}\)
a.\(DK:x\ge0,x\ne1\)
\(A=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(DK:x\ge0\)
\(B=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
b.\(A-B=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{x-x+\sqrt{x}+2}{x+\sqrt{x}}=\frac{\sqrt{x}+2}{x+\sqrt{x}}>0\)
\(\Rightarrow A-B>0\Rightarrow A>B\)
c.Ta co:\(A.B=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
De \(A.B\in Z\)
\(\Rightarrow1-\frac{3}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\frac{3}{\sqrt{x}+1}\in Z\)
\(\Rightarrow3⋮\sqrt{x}+1\)
\(\Rightarrow x=4\)
d.Ta co: \(A.B=\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{2}\)
\(\Leftrightarrow2\sqrt{x}-4< \sqrt{x}+1\)
\(\Leftrightarrow x< 25\)
a) x + \(\sqrt{\left(x-2^{ }\right)^2}\)= x +\(|x-2|\)= x +2-x (vì x<2)
b) \(\sqrt{\left(x-3\right)^2}\)-x = \(|x-3|-x=x-3-x\) (vì x>3)
c) m- \(\sqrt{m^2-2m+1}=m-\sqrt{\left(m-1\right)^2}\)
Những con còn lại bạn làm như trên và rút gọn đi là được
d: \(=x+y-\left|x-y\right|\)
=x+y-x+y=2y
e: \(=\left|5a-1\right|-4a=\left|5\cdot\dfrac{1}{2}-1\right|-2\)
\(=\dfrac{5}{2}-1-2=\dfrac{5}{2}-3=-\dfrac{1}{2}\)
f: \(=\left|2a-3\right|-4a-1\)
\(=\left|-10-3\right|-4\cdot\left(-5\right)-1=13+20-1=32\)