\(\left(\frac{8x\sqrt{x}-1}{2x-\sqrt{x}}-\frac{8x\sqrt{x}+1}{2x+\sqrt{x}}\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)

b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)

c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)

d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)

Thiếu ĐKXĐ : ..............

5 tháng 9 2020

a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)

        \(=27-4\sqrt{3x}\)

b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)

        \(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)

        \(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)

        \(=7\sqrt{2x}+28\)

c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)

        \(=\frac{1}{x-y}.\sqrt{6}\)

d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)

        \(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)

        \(=2a.\sqrt{5}\)

4 tháng 4 2020

\(a,M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=\left(\frac{2x-2\sqrt{2}x+2\sqrt{2x}-1}{2x-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x+1}}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)

\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(1+\frac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\right)\)

\(=\left(\frac{-2\sqrt{2}x+2\sqrt{2x}}{2x-1}\right):\left(\frac{-2\sqrt{x}-2}{2x-1}\right)\)

\(=\frac{-\sqrt{2}x+\sqrt{2x}}{\sqrt{x}-1}\)

\(=\frac{-\sqrt{2x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=-\sqrt{2x}\)

\(b,x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)

\(x=\frac{1}{2}\left(1+2\sqrt{2}+2\right)\)

\(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\)

Thay \(x=\frac{1}{2}\left(1+\sqrt{2}\right)^2\) vào \(M=-\sqrt{2x}\) ta được:

\(M=-\sqrt{2.\frac{1}{2}\left(1+\sqrt{2}\right)^2}\)

\(M=-1-\sqrt{2}\)

Vậy ..............

27 tháng 10 2020

a) \(\sqrt{12}-3\sqrt{75}+0,5\sqrt{\left(-6\right)^2\cdot3}\)

\(=2\sqrt{3}-15\sqrt{3}+0,5\sqrt{108}\)

\(=-13\sqrt{3}+3\sqrt{3}\)

\(=-10\sqrt{3}\)

b) \(3\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{4+2\sqrt{3}}\)

\(=3\left|\sqrt{2}-\sqrt{3}\right|-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=3\left(\sqrt{3}-\sqrt{2}\right)-\left|\sqrt{3}+1\right|\)

\(=3\sqrt{3}-3\sqrt{2}-\sqrt{3}-1\)

\(=2\sqrt{3}-3\sqrt{2}-1\)

c) \(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\div\frac{1}{x-2\sqrt{x}+1}\)

\(=\frac{2x+1-\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)

\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

24 tháng 9 2018

a/ \(B=\frac{1+x}{1+\sqrt{x}+x}\)

b/ Giải phương trình bậc 2 thì dễ rồi ha

c/ \(\frac{1+x}{1+\sqrt{x}+x}>\frac{2}{3}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)đung vì x khac 1

24 tháng 9 2018

Phương trình bậc hai là\(x-\sqrt{6x}+1=0\) thì giải làm sao bạn ơi??

a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{-\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x\sqrt{x}+x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\dfrac{-2x^2+x\sqrt{x}-2\sqrt{x}+1+2x^2-x\sqrt{x}-2x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{-2x-\sqrt{x}+1}\)

\(=\dfrac{-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{-\sqrt{x}\left(2x+\sqrt{x}-1\right)}\)

\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

b: Thay \(x=17-12\sqrt{2}=\left(3-2\sqrt{2}\right)^2\) vào A, ta được:

\(A=\dfrac{17-12\sqrt{2}-\sqrt{2}+1+1}{3-2\sqrt{2}}=\dfrac{19-13\sqrt{2}}{3-2\sqrt{2}}=5-\sqrt{2}\)