Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do n2 luôn > hoặc = 0 khác -3 => n2 + 3 khác 0
=> A luôn tồn tại
b) bn chỉ việc thay n rùi tính A là ra
Lời giải:
a. Ta thấy $n^2+5\geq 5> 0$ với mọi $n\in\mathbb{Z}$
$\Rightarrow n^2+5\neq 0$ với mọi $n\in\mathbb{Z}$
$\Rightarrow$ phân số $M$ luôn tồn tại.
b.
Với $n=0$ thì $M=\frac{0-3}{0^2+5}=\frac{-3}{5}$
Với $n=2$ thì $M=\frac{2-3}{2^2+5}=\frac{-1}{9}$
Với $n=-5$ thì $M=\frac{-5-3}{(-5)^2+5}=\frac{-4}{15}$
ta có mẫu của M là : \(n^2+5>0\forall n\) thế nên M luôn tồn tại
b. ta có bảng sau
n | 0 | 2 | -5 |
M | \(-\frac{3}{5}\) | \(-\frac{1}{9}\) | \(-\frac{8}{30}\) |
a,Một phân số tồn tại khi mẫu khác 0
Nhận thấy phân số A có mẫu luôn lớn hơn 0
Nên phân số A luôn tồn tại với mọi n
b, n=-5 thì A=-5/14
n=0 thì A=-5/3
n=5 thì A=0
Ta có:
\(n^2\ge0\forall n\inℤ\)\(\Rightarrow n^2+5\ge5\forall n\inℤ\)\(\Rightarrow n^2+5>0\forall n\inℤ\)
\(\Rightarrow n^2+5\ne0\forall n\inℤ\)(1)
Xét phân số M = \(\frac{n-2}{n^2+5}\left(n\inℤ\right)\)
Vì ta có (1) nên M luôn tồn tại
Vậy M luôn tồn tại với mọi \(n\inℤ\)p
Chú ý : Một phân số luôn tồn tại ( hay được xác định) khi mẫu số của nó khác 0.
Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5
suy ra (n+8).2 chia hết cho n+8 hay2n+16
Suy ra (2n+16)-(2n-5) chian hết cho 2n-5
suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}
suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}
suy ra n thuộc{-8;13;4;1;6;-1;3;2}
Vậy n thuộc{-8;13;4;1;6;-1;3;2}
a) Để phân số B không tồn tại thì (n-2)(n+1) khác 0
Với (n-2)(n+1)>0
Vì n+1>n-2
=>n+1<0 hoặc n-2>0
=>n<-1 hoặc n>2 (1)
Với (n-2)(n+1)<0
Vì n+1>n-2
=>n+1>0 hoặc n-2>0
=>n>-1 hoặc n>2 (2)
=>n thuộc Z ,n khác -1,n khác 2
câu b thì tương tự câu a
câu c thì chắc ai cũng có thể làm được
mình làm nhanh nhất , tick cho mình nhé!
a, - Để biểu thức B luôn tồn tại thì :
\(n^2+5\ne0\)
Mà \(n^2+5>0\forall n\)
=> \(n^2+5\ne0\) ( luôn đúng )
Vậy phân số B luôn tồn tại .
b, Thay n = 0 vào phân số B ta được :
\(B=\frac{0-2}{0^2+5}=-\frac{2}{5}\)
Thay n = 0 vào phân số B ta được :
\(B=\frac{2-2}{2^2+5}=0\)
Thay n = -5 vào phân số B ta được :
\(B=\frac{-5-2}{\left(-5\right)^2+5}=-\frac{7}{30}\)
a) Ta có: \(n^2\ge0\forall n\)
\(\Rightarrow n^2+5\ge5>0\forall x\)
⇒Với ∀n thì \(n^2+5\ne0\)
⇒\(B=\frac{n-2}{n^2+5}\) luôn xác định được giá trị(đpcm)
b) Thay n=0 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(\frac{0-2}{0^2+5}=\frac{-2}{5}\)
Thay n=2 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(B=\frac{2-2}{2^2+5}=\frac{0}{9}=0\)
Thay n=-5 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(\frac{-5-2}{\left(-5\right)^2+5}=\frac{-7}{30}\)
Vậy: \(-\frac{2}{5};0;\frac{-7}{30}\) lần lượt là ba giá trị của phân số \(B=\frac{n-2}{n^2+5}\) tại lần lượt n=0; n=2 và n=-5