Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow C=\frac{\left(2+\sqrt{a}\right)^2-\left(2-\sqrt{a}\right)^2+4a}{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)}:\frac{2\sqrt{a}-\sqrt{a}-3}{\sqrt{a}\left(2-\sqrt{a}\right)}\)
\(\Leftrightarrow C=\frac{2\sqrt{a}+2\sqrt{a}+4a}{\left(2-\sqrt{a}\right)\left(\sqrt{a}+2\right)}.\frac{\left(2-\sqrt{a}\right).\sqrt{a}}{\sqrt{a}-3}=\frac{\left(4\sqrt{a}+4a\right)\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)}\)
b) Để C>0 thì \(\frac{4\left(a-\sqrt{a}\right)\sqrt{a}}{\left(\sqrt{a}+2\right)\sqrt{a}+3}>0hay\left(a-\sqrt{a}\right)>0=>a>1\)
c) bổ sung ý c) tìm a để C=-1
để B=-1
\(\Leftrightarrow\left(4\sqrt{a}+4a\right)\sqrt{a}=-\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)\)
\(\Leftrightarrow4a+4a\sqrt{a}=-a+3\sqrt{a}-2\sqrt{a}+6\)
\(\Leftrightarrow5a+4a\sqrt{a}-\sqrt{a}-6=0=>\orbr{\begin{cases}\sqrt{a}=1\\5\sqrt{a}+4a-1=0\left(zô\right)lý\end{cases}=>a=1}\)
a)\(\hept{\begin{cases}a\ge0\\\sqrt{a}-2>0\Leftrightarrow\\\sqrt{a}+2>0\end{cases}a>4}\)
b)\(\frac{\sqrt{a}\left(\sqrt{a}+2\right)+\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}.\frac{a-4}{2\sqrt{a}}\) \(=\frac{2a}{a-4}.\frac{a-4}{2\sqrt{a}}=\sqrt{a}\)
c)\(\sqrt{a}>3\Leftrightarrow a>9\)
a
\(ĐKXĐ:a\ne0;a\ne1;a\ne\sqrt{2}\)
\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(Q=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{1}\)
\(Q=\frac{\sqrt{a}-2}{\sqrt{a}}\)
b
\(Q>0\Leftrightarrow\frac{\sqrt{a}-2}{\sqrt{a}}>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow\sqrt{a}>2\Leftrightarrow a>\sqrt{2}\)
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
I don't now
sorry
...................
nha
a) Đk \(x>0\)và \(x\ne4\)
=\(\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right)\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\frac{2\sqrt{x}}{x-4}\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\frac{2}{\sqrt{x}+2}\)
b) Để \(\frac{2}{\sqrt{x}+2}>\frac{1}{2}\)
\(\Leftrightarrow\frac{4-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
\(\Leftrightarrow\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
Vì \(2\left(\sqrt{x}+2\right)>0\)
mà\(\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
nên \(-\sqrt{x}+2>0\)\(\Leftrightarrow x< 4\)
Vậy vs \(0< x< 4\)thì \(A>\frac{1}{2}\)
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
\(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(\Leftrightarrow A=\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=\frac{2}{\sqrt{x}+2}\)
b) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{\sqrt{x}+2}>\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}+2< 4\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow x< 4\)
Vậy để \(A>\frac{1}{2}\Leftrightarrow0< x< 4\)
c) \(B=\frac{7}{3}A\)
\(\Leftrightarrow B=\frac{7}{3}\cdot\frac{2}{\sqrt{x}+2}\)
\(\Leftrightarrow B=\frac{14}{3\sqrt{x}+6}\)
Tìm x hay tìm B đây bạn ?