Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
a: \(A=\frac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\frac{4-a}{\sqrt{a}-2}\)
\(=\frac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)=0\)
b: \(B=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}:\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}\cdot\frac{1}{\left(\sqrt{x}-\sqrt{y}\right)^2}=\frac{x-\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
Bài 1:
a: \(A=\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)
\(=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\frac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
b: \(B=\frac{x-1}{\sqrt{y}-1}\cdot\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\)
\(=\frac{\left(x-1\right)}{\sqrt{y}-1}\cdot\frac{\left|y-2\sqrt{y}+1\right|}{\left|\left(x-1\right)^2\right|}\)
\(=\left(x-1\right)\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\left(\sqrt{y}-1\right)}{x-1}\)


\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
phân ra 2 th rồi giải típ


Theo hệ thức vi et x1+x2=-2(1);x1x2=k(2)
a, x1-x2=14<=>căn (x1-x2)2=14<=>căn [(x1+x2)2-4x1x2]=14, bạn thay nốt phần còn lại nhé
b, thay điều kiện trên vào (1) giải ra được x1 và x2 rồi thay vào (2) tìm được k
c, x12+x22=(x1+x2)2-2x1x2, bạn thay vào rồi giải nốt nhé