\(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right):\dfrac{x-\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a , Ta có :

\(A=\left[\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right].\dfrac{\sqrt{x^3}+1}{x-\sqrt{x}+1}\)

\(A=\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right].\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b , \(A< 0\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

7 tháng 10 2018

ĐKXĐ : \(x>0\)\(x\ne1\)

Câu a : \(P=\left(\dfrac{2-x}{x-\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{\sqrt{x}+1}{\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{2-x+\sqrt{x}+x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Câu b : Thay \(x=\dfrac{9}{16}\) vào P ta được :

\(P=\dfrac{\sqrt{\dfrac{9}{16}}-1}{\sqrt{\dfrac{9}{16}}}=\dfrac{\dfrac{3}{4}-1}{\dfrac{3}{4}}=\dfrac{\dfrac{-1}{4}}{\dfrac{3}{4}}=-\dfrac{1}{3}\)

Câu c : Để \(P< \dfrac{1}{2}\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)

\(\Leftrightarrow2\sqrt{x}-2< \sqrt{x}\)

\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

22 tháng 9 2018

....

a: \(P=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\)

\(=\dfrac{\left(x-1\right)^2}{4x}\cdot\dfrac{-4\sqrt{x}}{x-1}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)

b: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{-\left(4+2\sqrt{3}-1\right)}{\sqrt{3}+1}=\dfrac{-\left(3+2\sqrt{3}\right)}{\sqrt{3}+1}=\dfrac{-3-\sqrt{3}}{2}\)

c: Để P<0 thì -(x-1)<0

=>x-1>0

=>x>1

1 tháng 2 2019

\(a)A=\dfrac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\dfrac{2+\sqrt{8}}{1+\sqrt{2}}\\ A=\dfrac{\left(\sqrt{3}-\sqrt{6}\right)\left(1+\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}-\dfrac{\left(2+\sqrt{8}\right)\left(1-\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}\\ A=-\left(\sqrt{3}+\sqrt{6}-\sqrt{6}-2\sqrt{3}\right)+2-2\sqrt{2}+2\sqrt{2}-4\\ A=\sqrt{3}-2\)

\(b)B=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\\ B=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\\ B=\dfrac{\sqrt{x}+2-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\left(\sqrt{x}+2\right)\\ B=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\\ B=\dfrac{4}{x-4}\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 1)

ĐK: \(x\geq 0; x\neq -4\)

Ta có:

\(A=\frac{1}{\sqrt{x}+2}+\frac{1}{2+\sqrt{x}}-\frac{2\sqrt{x}}{x+4}\)

\(=\frac{2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x+4}=2\left(\frac{1}{\sqrt{x}+2}-\frac{\sqrt{x}}{x+4}\right)\)

\(=2.\frac{x+4-x-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=2.\frac{4-2\sqrt{x}}{(\sqrt{x}+2)(x+4)}=\frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}\)

\(B=(\sqrt{2}+\sqrt{3}).\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)

\(=2+\sqrt{6}-\sqrt{6}+\frac{\sqrt{3}.\sqrt{111}}{\sqrt{111}}=2+\sqrt{3}\)

Để \(A=B\Leftrightarrow \frac{4(2-\sqrt{x})}{(\sqrt{x}+2)(x+4)}=2+\sqrt{3}\)

PT rất xấu. Mình nghĩ bạn đã chép sai biểu thức A.

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 2 : Tọa độ điểm B ?

Bài 3:

Để pt có hai nghiệm thì \(\Delta'=(m-3)^2-(m^2-1)>0\)

\(\Leftrightarrow 10-6m>0\Leftrightarrow m< \frac{5}{3}\)

Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2(m-3)\\ x_1x_2=m^2-1\end{matrix}\right.\)

Khi đó:

\(4=2x_1+x_2=x_1+(x_1+x_2)=x_1+2(m-3)\)

\(\Rightarrow x_1=10-2m\)

\(\Rightarrow x_2=2(m-3)-(10-2m)=4m-16\)

Suy ra: \(\Rightarrow x_1x_2=(10-2m)(4m-16)\)

\(\Leftrightarrow m^2-1=8(5-m)(m-4)\)

\(\Leftrightarrow m^2-1=8(-m^2+9m-20)\)

\(\Leftrightarrow 9m^2-72m+159=0\)

\(\Leftrightarrow (3m-12)^2+15=0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn điều kiện trên.

24 tháng 10 2018

giải hộ

28 tháng 10 2022

Bài 2: 

a: =>25x=35^2=1225

=>x=49

b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

=>x=-1

20 tháng 10 2022

a: \(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\cdot\left(-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

b: Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16

c: \(C+\dfrac{3}{2}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}+\dfrac{3}{2}=\dfrac{-3\sqrt{x}+3\sqrt{x}+6}{2\left(\sqrt{x}+2\right)}=\dfrac{3}{\sqrt{x}+2}>0\)

=>C>-3/2

1: Khi x=64 thì \(A=\dfrac{8+2}{8}=\dfrac{5}{4}\)

2: \(B=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

8 tháng 9 2018

Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(

Bài 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì P-1<0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

=>căn a-2>0

=>a>4