\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

a, Tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

đk x khác -1

A=\(\frac{\left(x^3-x^2+x\right)+\left(3x^2-3\right)+\left(x+4\right)}{x^3+1}=\frac{\left(x^3+1\right)+2x^2+2x}{x^3+1}=1+\frac{2x}{x^2-x+1}=\frac{x^2+x+1}{x^2-x+1}\)

a) \(A=\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}=\frac{\left(2x+1\right)^2+3}{\left(2x-1\right)^2+3}\) Gọn thế nào quan điểm của người chấm.

b) Tử & mẫu của A luôn lớn hơn 3 lên suy ra ta luôn dương

5 tháng 2 2017

A = \(\frac{x}{x+1}\)\(-\)\(\frac{3-3x}{x^2-x+1}\)\(+\)\(\frac{x+4}{x^3+1}\)

\(\frac{x\left(x^2-x+1\right)}{x^3+1}\)\(-\)\(\frac{3-3x\left(x+1\right)}{x^3+1}\)\(+\)\(\frac{x+4}{x^3+1}\)

\(\frac{x\left(x^2-x+1\right)-\left(3x-3\right)\left(x+1\right)+\left(x+4\right)}{x^3+1}\)

đến đây cậu tự nhân phá ra rồi rút gọn nhé

10 tháng 8 2021

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

10 tháng 8 2021

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

DD
16 tháng 7 2021

a) ĐK: \(x\ne0,x\ne\pm3\)

\(A=\left(\frac{x-3}{x^2-9}+\frac{1}{x+3}\right)\div\frac{x}{x+3}\)

\(=\left(\frac{1}{x+3}+\frac{1}{x+3}\right)\div\frac{x}{x+3}\)

\(=\frac{2}{x+3}\times\frac{x+3}{x}=\frac{2}{x}\)

b) \(\left|A\right|=\left|\frac{2}{x}\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}=3\\\frac{2}{x}=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)(thỏa mãn) 

29 tháng 12 2019

\(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(\forall x\in\left[-2;2\right]\) thì \(\left(x-2\right)\left(x+2\right)< 0\Rightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}< 0\Rightarrow A< 0\)

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

23 tháng 12 2018

đkcđ: x khác 0 và -3

\(A=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x.\left(x-3\right)}\)

\(A=\frac{\left(x-3\right)^2}{x.\left(x-3\right)}-\frac{x^2}{x.\left(x-3\right)}+\frac{9}{x.\left(x-3\right)}\)

\(A=\frac{x^2-6x+9-x^2+9}{x.\left(x-3\right)}=\frac{-6x+18}{x.\left(x-3\right)}=\frac{-6.\left(x-3\right)}{x.\left(x-3\right)}=-\frac{6}{x}\)

để A thuộc Z => 6 chia hết cho x 

=>....

23 tháng 12 2018

\(Taco\)

\(ĐKXD:x\ne0;x\ne3\)

\(\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-6x+9}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}=\frac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\)

\(=\frac{18-6x}{x-3}\)

\(A\inℤ\Leftrightarrow18-6x⋮x-3\Leftrightarrow18-6x+6x-18⋮x-3\Leftrightarrow0⋮x-3\)

Vậy vs mọi GT của x thì A nguyên