\(A=\frac{x-y}{x+y}\).Nếu x2-2y2=xy
Và y k...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(x^2-2y^2=xy\)

\(\Leftrightarrow\left(x^2+xy\right)-\left(2y^2-2xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow x=2y\)

\(\Rightarrow A=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

21 tháng 8 2018

A = \(\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)\(\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)

\(\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)\(\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)\(\frac{2.6}{3.7}=\frac{4}{7}\)

c, theo đề bài ta có : 

x2 = yz, y2 = xz , z2 = xy

\(\Rightarrow\frac{x}{y}=\frac{z}{x},\frac{y}{x}=\frac{z}{y},\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)

AD t/c DTSBN, ta có 

\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{X+z+y}{y+x+z}=1\)

x= 1y

z= 1x

y= 1z

=> x = y = x

23 tháng 8 2016

bài a âu có z âu mà tìm bn ???

23 tháng 8 2016

\(\frac{x}{a}?\)

5 tháng 5 2018

      VE HINH

 a) Ta có : tia Oy nằm giữa hai tia Ox và Oz   

=>   góc xOz = góc xOy + góc yOz 

=>         yOz = xOz - xOy=75-35=40do

b) Ta có : góc yOt = góc xOt + góc xOy ( Vì xOt và xOy là hai góc kề bù )

 =>    góc xOt = góc yOt - góc xOy = 180 - 35 =145 độ                          ok nha bạn 

5 tháng 5 2018

hình bạn tự vẽ nha

b) Vì Ot là tia đối của tia Oy => tOy là góc bẹ mà góc bẹt có tổng số đo = 180độ

=> tOy - xOy = xOt

=> 180độ - 25độ = xOt

=> xOt = 155độ

nhớ thêm dấu góc vào nha

- Giúp tớ với nhé ^^Câu 1 : So sánh 2300 và 3200Câu 2 : Tính nhanh : 25 . 20, 04 + 75 . 20, 04 - 2004 . 20,03 + 2004 . 20,04Câu 4: Chứng tỏ số B = 1 + 3 + 32 + 33 + ... + 3162 + 3163 chia hết cho 40.Câu 5 : Tìm số x , y, z biết ( x - \(\frac{1}{3}\))(y - \(\frac{1}{5}\))(z + \(\frac{1}{4}\)) = 0 biết x + 2 = y - 1 = z + 1Câu 6 : Cho \(A=\frac{4}{n-5}\)A. Tìm giá trị n để A là phân sốB. Tìm giá trị n để A có giá trị là số...
Đọc tiếp

- Giúp tớ với nhé ^^
Câu 1 : So sánh 2300 và 3200
Câu 2 : Tính nhanh : 25 . 20, 04 + 75 . 20, 04 - 2004 . 20,03 + 2004 . 20,04

Câu 4: Chứng tỏ số B = 1 + 3 + 32 + 33 + ... + 3162 + 3163 chia hết cho 40.
Câu 5 : Tìm số x , y, z biết ( x - \(\frac{1}{3}\))(y - \(\frac{1}{5}\))(z + \(\frac{1}{4}\)) = 0 biết x + 2 = y - 1 = z + 1
Câu 6 : Cho \(A=\frac{4}{n-5}\)
A. Tìm giá trị n để A là phân số
B. Tìm giá trị n để A có giá trị là số nguyên
Câu 7 : Trên đường thẳng xy lần lượt lấy các điểm theo thứ tự A , B , C, D sao cho AC = BD
A. Chứng minh rằng AB = CD
B . Gọi P, Q lần lượt là trung điểm của AB và CD. Chứng minh rằng \(PQ=\frac{AC+BD}{2}\)
p/s: Các bạn trả lời giúp tớ cách giải nhé. Cảm ơn.
Câu 3 : Tính tổng \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2011.2013}+\frac{2}{2013.2015}\)

3
29 tháng 4 2015

Câu 2:

 25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04

= 20,04(25 + 75 - 2003 + 2004)

= 20,04.101 = 2024,04

29 tháng 4 2015

C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)

\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)

mấy câu kia mình lười làm lắm bạn

Chúc bạn học tốt!^_^

12 tháng 8 2018

\(\frac{x+5}{3}=\frac{y-7}{4}\)

áp dụng t\c của dãy tỉ số bằng nhau ta có :

\(\frac{x+5}{3}=\frac{y-7}{4}=\frac{x+5+y-7}{3+4}=\frac{23-2}{7}=\frac{21}{7}=3\)

\(\Rightarrow\hept{\begin{cases}x=3\cdot3-5=4\\y=3\cdot4+7=19\end{cases}}\)

12 tháng 8 2018

đặt \(k=\frac{x+5}{3}=\frac{y-7}{4}\)

\(\Rightarrow\hept{\begin{cases}x=3k-5\\y=4k+7\end{cases}}\)

\(\Rightarrow x+y=3k-5+4k+7=7k+2=23\)

\(\Rightarrow k=\frac{23-2}{7}=3\)

\(\Rightarrow\hept{\begin{cases}x=4\\y=19\end{cases}}\)

các câu tiếp theo tương tự

28 tháng 7 2017

a) \(\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2016}=0\\\left|y^2-9\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=\left\{-3;3\right\}\end{cases}}\)

b) \(x^2-xy+y=10\)

\(x^2-1-\left(xy-y\right)=9\)

\(\left(x-1\right)\left(x+1\right)-y\left(x-1\right)=9\)

\(\left(x-1\right)\left(x+1-y\right)=9\)

Ta có bảng sau :

x - 11-13-39-9
x + 1 - y9-93-31-1

Còn lại cậu tính được x từ dòng 1 thì thay vào dòng 2 rồi tìm y nha .

28 tháng 7 2017

a, \(\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}=0\)

Vì \(\left(x-2\right)^{2016}\ge0\forall x\) và \(\left|y^2-9\right|\ge0\forall y\Rightarrow\left|y^2-9\right|^{2017}\ge0\)

\(\Rightarrow\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2016}=0\\\left|y^2-9\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}\Rightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=-3\end{cases}}\end{cases}}}\)

=> x=2; y=3 hoặc y = -3

d: =>x+5=0 và 3-y=0

=>x=-5 hoặc y=3

e: =>x-2=0 và y+1=0

=>x=2 và y=-1