Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)
_Minh ngụy_
\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )
\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)
_Minh ngụy_
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
a) Ta có: \(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)
\(=\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-\left(x\sqrt{x}-y\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\cdot\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{y}-y\sqrt{x}}\)
\(=\frac{\left(x-\sqrt{xy}+y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\frac{x-\sqrt{xy}+y}{\sqrt{xy}}\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\y>0\\x\ne y\end{matrix}\right.\)
Ta có: \(C-1=\frac{x-\sqrt{xy}+y}{\sqrt{xy}}-1\)
\(=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{xy}}\)
\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\forall x,y\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow C-1>0\)
hay C>1(đpcm)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)
a) \(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)
\(C=\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(C=\frac{x+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}\)
\(C=\frac{\left(x+y-\sqrt{xy}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x\sqrt{y}-y\sqrt{x}}\)
\(C=\frac{\left(x+y-\sqrt{xy}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)
\(C=\frac{x+y-\sqrt{xy}}{\sqrt{xy}}\)
b)Giả sử \(C>1\)
\(\Leftrightarrow\frac{x+y-\sqrt{xy}}{\sqrt{xy}}>1\)
\(\Leftrightarrow\frac{x+y-\sqrt{xy}-\sqrt{xy}}{\sqrt{xy}}>0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\)( luôn đúng với mọi \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\))
Nhầm ĐKXĐ :\(\hept{\begin{cases}x>0\\y>0\\x\ne y\end{cases}}\)
a.\(DK:x,y>0\)
Ta co:
\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b.
Ta lai co:
\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)
Dau '=' xay ra khi \(x=y=4\)
Vay \(A_{min}=1\)khi \(x=y=4\)