\(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

4 tháng 9 2016

Sai đề

a) Ta có: \(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)

\(=\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-\left(x\sqrt{x}-y\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}:\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\cdot\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{y}-y\sqrt{x}}\)

\(=\frac{\left(x-\sqrt{xy}+y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\frac{x-\sqrt{xy}+y}{\sqrt{xy}}\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\y>0\\x\ne y\end{matrix}\right.\)

Ta có: \(C-1=\frac{x-\sqrt{xy}+y}{\sqrt{xy}}-1\)

\(=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{xy}}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\forall x,y\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow C-1>0\)

hay C>1(đpcm)

6 tháng 9 2020

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)

a) \(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)

\(C=\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(C=\frac{x+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}\)

\(C=\frac{\left(x+y-\sqrt{xy}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x\sqrt{y}-y\sqrt{x}}\)

\(C=\frac{\left(x+y-\sqrt{xy}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)

\(C=\frac{x+y-\sqrt{xy}}{\sqrt{xy}}\)

b)Giả sử  \(C>1\)

\(\Leftrightarrow\frac{x+y-\sqrt{xy}}{\sqrt{xy}}>1\)

\(\Leftrightarrow\frac{x+y-\sqrt{xy}-\sqrt{xy}}{\sqrt{xy}}>0\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\)( luôn đúng với mọi \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\))

6 tháng 9 2020

Nhầm ĐKXĐ :\(\hept{\begin{cases}x>0\\y>0\\x\ne y\end{cases}}\)

27 tháng 10 2019

a.\(DK:x,y>0\)

Ta co:

\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b.

Ta lai co:

\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)

Dau '=' xay ra khi \(x=y=4\)

Vay \(A_{min}=1\)khi \(x=y=4\)