Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\frac{2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{x-4\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(A=\frac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
để A nguyên \(5⋮\sqrt{x}-3\)
lập bảng ra đc
\(x=\left\{2\right\}\)
1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\); \(\sqrt{x}-3\rightarrow\sqrt{x-3}\)
Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)
a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
b) Để \(M=\frac{3}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)
\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)(tm)
Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)
c) Khi x = 4
\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)
\(\Leftrightarrow M=\frac{2+2}{2+3}\)
\(\Leftrightarrow M=\frac{4}{5}\)
Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)
a) ĐKXĐ: \(\hept{\begin{cases}x-9\ne0\\\sqrt{x}\ge0\\\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ge0\\x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne9\\x>0\end{cases}}}\)
\(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-9}\)
b) \(x=\sqrt{6+4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(\Leftrightarrow x=\sqrt{4+4\sqrt{2}+2}-\sqrt{2+2\sqrt{2}+1}\)
\(\Leftrightarrow x=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(\Leftrightarrow x=\left|2+\sqrt{2}\right|-\left|\sqrt{2}+1\right|\)
\(\Leftrightarrow x=2+\sqrt{2}-\sqrt{2}-1=1\left(TM\right)\)
Vậy với x= 1 thì giá trị của biểu thức \(A=\frac{\left(1+1\right)\left(1-3\right)}{1-9}=\frac{2.\left(-2\right)}{-8}=\frac{-4}{-8}=\frac{1}{2}\)
c)
Ta có :
\(\frac{x-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)
+) \(\frac{1}{A}\)nguyên
\(\Leftrightarrow1+\frac{2}{\sqrt{x}+1}\)nguyên
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)
\(\Leftrightarrow x=1\)
Vậy ..............
a) ĐKXĐ \(\left\{{}\begin{matrix}x\ge0\\x\ne1\\x\ne9\end{matrix}\right.\)
\(A=\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ =\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)
b)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\sqrt{3}\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-3}-\sqrt{3}=0\\ \Leftrightarrow\frac{\sqrt{x}+2-\sqrt{3}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=0\\ \Leftrightarrow\frac{\sqrt{x}+2-\sqrt{3x}+3\sqrt{3}}{\sqrt{x}-3}=0\\ \Leftrightarrow\sqrt{x}+2-\sqrt{3x}+3\sqrt{3}=0\)
(Bạn thử tìm x đi nha, mk ra số xấu lắm TvT)
c)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
Để A nhận giá trị nguyên thì \(5⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)\)
Ta có bảng sau:
Vậy với x=16; x=4 và x=64 thì A nhận giá trị nguyên