Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là một phân số khi và chỉ khi n – 2 ≠ 0 ⇒ n ≠ 2
A là số nguyên khi và chỉ khi 3 chia hết cho (n - 2) hay (n - 2) ∈ Ư(3)
Ta có: Ư(3) = {-3 ; -1 ; 1 ; 3}
n – 2 = -3 ⇒ n = -1
n – 2 = -1 ⇒ n = 1
n – 2 = 1 ⇒ n = 3
n – 2 = 3 ⇒ n = 5
vậy n ∈ {-1; 1 ; 3 ; 5} thì A là số nguyên
Lời giải:
A là một phân số khi và chỉ khi n – 2 ≠ 0 ⇒ n ≠ 2
A là số nguyên khi và chỉ khi 3 chia hết cho (n - 2) hay (n - 2) ∈ Ư(3)
Ta có: Ư(3) = {-3 ; -1 ; 1 ; 3}
n – 2 = -3 ⇒ n = -1
n – 2 = -1 ⇒ n = 1
n – 2 = 1 ⇒ n = 3
n – 2 = 3 ⇒ n = 5
vậy n ∈ {-1; 1 ; 3 ; 5} thì A là số nguyên
\(A=\frac{3}{n-2}\) la phan so khi \(n-2\ne0\Rightarrow n\ne2\)
\(A=\frac{3}{n-2}\inℤ\Leftrightarrow3⋮n-2\)
\(\Rightarrow n-2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(A=\frac{3}{n-2}\)
a) Để A là 1 phân số \(\Rightarrow n-2\ne0\Rightarrow n\ne2\)
b) Để A \(\inℤ\Rightarrow3⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
b) Đề biểu thức A là một số nguyên thì ta có: 3 chia hết cho n-2
( bạn cứ giải theo trình tự như ƯC)
a ) Để A = \(\frac{3}{n-2}\) là phân số thì n - 2 ≠ 0 => n ≠ 2
b ) Để A = \(\frac{3}{n-2}\) là phân số lớn nhất khi n - 2 = 1 => n = 3
a ) Để \(\frac{3}{n-2}\) là phân số thì n - 2 ≠ 0 => n ≠ 2 => n = { n ∈ Z | n ≠ 2 }
b ) Để \(\frac{3}{n-2}\) là số nguyên thì 3 ⋮ n - 2 => n - 2 ∈ Ư ( 3 ) = { + 1 ; + 3 }
Ta có : n - 2 = 1 => n = 3 ( nhận )
n - 2 = - 1 => n = 1 ( nhận )
n - 2 = 3 => n = 5 ( nhận )
n - 2 = - 3 => n = - 1 ( nhận )
Vậy n = { + 1 ; 3 ; 5 }
a:biểu thức A có tử là 3 thuộc Z
co mau la : n-2
để A là phân số thì mẫu số là n-2 khác 0 suy ra n khác 0+2 suy ra n khác 2
b:để A là số nguyên thì 3 chia hết cho n-2 suy ra n-2 thuộc ước của 3 =[-1;1;-3;3] suy ra n thuộc [1;3;-1;5]
Để A là số nguyên
=> 3 chia hết cho n - 2
=> n - 2 thuộc Ư(3) = {-1 ; 1 ; -3 ; 3}
Ta có bảng sau :
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
Vậy ngoài những số (3 ; 1 ; 5 ; -1) thì A là phân số
#)Giải :
1.a) Để A là phân số \(\Rightarrow\) -5 không chia hết cho n - 2 \(\Rightarrow n-2\notinƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\notin\left\{\pm3;7;1\right\}\)
b) Để A nguyên \(\Rightarrow-5⋮n-2\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{\pm3;7;1\right\}\)
a, Vì mẫu số không thể bằng 0 nên để A là phân số thì n - 2 khác 0
=> n khác 2
Vậy n thuộc {...; -1; 0; 1; 3;...}
b, Để A là số nguyên thì 3 phải chia hết cho n - 2
=> n - 2 thuộc {-1; 1; -3; 3}
=> n thuộc {1; 3; -1; 5}
Vậy...
ta co de 3/n-2 la so nguyen thi =) 3 chia het cho n-2 =) n-2=(+1;+3)
=) n = 1;-1;3;5
=) de A la p/s thi n khac 1;-1;3;5
\(A=\frac{3}{n+2}\)
a) \(\Leftrightarrow n+2\inƯ\left(3\right)\)
\(\Leftrightarrow n+2\in\left\{\pm1;\pm3\right\}\)
+) \(n+2=1\Leftrightarrow n=-1\)
+) \(n+2=-1\Leftrightarrow n=-3\)
+) \(n+2=3\Leftrightarrow n=1\)
+) \(n+2=-3\Leftrightarrow n=-5\)
b) \(A=\frac{3}{2};A=\frac{3}{2+2}=\frac{3}{4};A=\frac{3}{-7+2}=\frac{3}{-5}\)
\(A=\frac{3}{n+2}\)
Để A là phân số => \(n+2\ne0\)=> \(n\ne-2\)
Để A là số nguyên thì 3 ⋮ (n + 2)
⇒ n + 2 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ n ∈ {-5; -3; -1; 1}
\(A=\dfrac{3}{n+2}\left(n\ne-2\right)\)
Để A là một số nguyên thì 3 ⋮ n + 2
⇒ n + 2 ∈ Ư(3) = {1; -1; 3; -3}
⇒ n ∈ {-1; -3; 1; -5}
Vậy: ...