Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A= 5+52+53+...+5100
5A= 5(5+52+53+...+5100)
5A= 52+53+...+5101
5A-A= (52+53+...+5101) -( 5+52+53+...+5100)
4A= (5101-5):4
Vậy...
Ko chắc nha
\(a,A=5+5^2+5^3+...+5^{100}\)
\(5A=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{100}+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(4A=5^{101}-5\)
\(A=\frac{5^{101}-5}{4}\)
(Xin lỗi,mình chỉ biết làm phần a thôi)
HỌC TỐT
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : A = 5 + 52 + 53 + ... + 5100
=> 5A = 5(5 + 52 + 53 + ... + 5100)
=> 5A = 52 + 53 + 54 + ... + 5101
=> 5A - A = (52 + 53 + 54 + ... + 5101) - (5 + 52 + 53 + ... + 5100)
=> 4A = 5101 - 5
=> A = \(\frac{5^{101-5}}{4}\)
b) Ta có : A = 5 + 52 + 53 + ... + 5100
=> A = (5 + 52) + (53 + 54) + ... + (599 + 5100)
A = 30 + 52.(52 + 5) + ... + 598.(5 + 52)
A = 30 + 52 . 30 + ... + 598 . 30
A = 30.(1 + 52 + ... + 598) \(⋮\)30
a, A = 5 + 5^2 + 5^3 + ... + 5^100
5A = 5^3 + 5^4 + 5^5 + ... + 5^100 + 5^101
4A = 5^101 - 5
A = ( 5^101 - 5 ) : 4
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Ta có : A = \(5+5^2+5^3+...+5^{100}\) = \(\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
= \(5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)= \(6\left(5+5^3+5^4+...+5^{99}\right)\)
= \(6.5\left(1+5+5^2+...+5^{98}\right)\)= \(30\left(1+5+5^2+...+5^{98}\right)\)
Vậy A = \(30\left(1+5+5^2+...+5^{98}\right)\)
b. Vì A = \(30\left(1+5+5^2+...+5^{98}\right)\)nên A chia hết cho 30
Không biết đúng hay không
Sai thì thôi nhé !
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : A = 5 + 52 + 53 + ..... + 58
=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)
=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)
=> A = 30 + 52.30 + .... + 56.30
=> A = 30(1 + 52 + .... + 56)
Vì (1 + 52 + .... + 56) là số nguyên
Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có:
A=5+52+53+.....+5100
5A=52+53+.....+5101
5A-A=(52+53+.....+5101)-(5+52+53+.....+5100)
4A=52+53+...+5101-5-52-53-.....-5100
4A=5101-5
A=\(\frac{5^{101}-5}{4}\)
Vậy A=\(\frac{5^{101}-5}{4}\)
b)Ta có:
A=5+52+53+..+5100
A=(5+52)+(53+54)+...+(599+5100)
A=30+52.(5+52)+...+598.(5+52)
A=30+52.30+...+598.30
A=30.(1+52+...+598)\(⋮\)30
Vậy A \(⋮\)30
![](https://rs.olm.vn/images/avt/0.png?1311)
bai 1 (5+52) +....(57+58)
=5.(5+52) +54.(5+52) + 57(5+52)
=5.30 +54 .30 +57 .30
=30.(5.54.57) chia hết cho 30
bài 2
(3+33+35) +...(327+328+329)
=3.(3+33+35) +.....+328.(3+33 +35)
=3.273+...+328.273
=273.(3+ ......+328) chia hết cho 273
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
A = 5 + 5^2 + 5^3 +...+5^100
5A = 5^2 + 5^3 +...+5^101
4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]
A = \(\frac{5^{101}-5}{4}\)
b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5
=> A là hợp số
c,
A = 5 + 5^2 + 5^3 +... + 5^100
A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]
A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]
A = 30 + 5^2.30 + ... + 5^98 . 30
=> A chia hết cho 30
d.
Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]
Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]
=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]
Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng
Mà A chỉ có 4 chữ số 0
=> A không phải số chính phương
Ủng hộ mik nếu thấy OK Nha mấy bạn >..<