Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{1}{x-1}-\dfrac{x^2+x}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
b: A=1/5
=>\(\dfrac{x-1}{x^2+1}=\dfrac{1}{5}\)
=>x^2+1=5x-5
=>x^2-5x+6=0
=>x=2 hoặc x=3
\(a,ĐKXĐ:x\ne\pm1;x\ne-\frac{1}{2}\)
\(b,A=\left(\frac{1}{x+1}-\frac{2}{x-1}-\frac{x+5}{1-x^2}\right):\frac{2x+1}{x^2-1}\)
\(A=\left[\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x+5}{\left(x+1\right)\left(x-1\right)}\right]:\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\)
\(A=\left[\frac{x-1-2x-2+x+5}{\left(x+1\right)\left(x-1\right)}\right]:\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{2}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{2x+1}\)
\(A=\frac{2}{2x+1}\)
\(c,Để:A>0\)
\(\Rightarrow2x+1>0\)
\(\Rightarrow x>-\frac{1}{2}\)
\(Để:A< 0\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\frac{1}{2}\)
Vậy \(x>-\frac{1}{2}\) và \(x\ne1\) thì A>0
\(x< -\frac{1}{2}\) và \(x\ne-1\) thì A<0
a: \(P=\dfrac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+2}{2}=\dfrac{-3}{x-2}\)
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
a: \(A=\left(x^2+x+1-x\right):\dfrac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)
\(=\left(x^2+1\right)\cdot\left(1-x\right)\)
b: Để A<0 thì 1-x<0
=>x>1
c: |x-4|=5
=>x-4=5 hoặc x-4=-5
=>x=9(nhận) hoặc x=-1(loại)
Thay x=9 vào A, ta được:
\(A=\left(9^2+1\right)\left(1-9\right)=82\cdot\left(-8\right)=-656\)
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
a) \(B=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)
\(\Leftrightarrow B=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-4x-1}{x^2-1}\cdot\frac{x+2019}{x}\)
\(\Leftrightarrow B=\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\cdot\frac{x+2019}{x}\)
\(\Leftrightarrow B=\frac{x^2-1}{x^2-1}\cdot\frac{x+2019}{x}\)
\(\Leftrightarrow B=\frac{x+2019}{x}\)
b) Ta có : \(B=\frac{x+2019}{x}\)
\(\Leftrightarrow B=1+\frac{2019}{x}\)
Để B max \(\Leftrightarrow\)x min
Mà x là số nguyên
\(\Leftrightarrow\)x = 2 (Vì loại các giá trị ở đkxđ)
Vậy \(Max_B=\frac{2+2019}{2}=\frac{2021}{2}=1010,5\Leftrightarrow x=2\)
x là số nguyên thì x cũng có thể là âm mà bạn
phải lập luận như nào thì mới lấy x=2 được chứ
hé lo