Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
a, ĐKXĐ: \(x\ne\pm2\)
b, \(A=\frac{x^2}{x^2-4}-\frac{x}{x-2}+\frac{2}{x+2}\)
\(=\frac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{-4}{x^2-4}\)
c, Tại x = 1 ( t/m ĐKXĐ)
thì \(A=\frac{-4}{1^2-4}=\frac{4}{3}\)
làm tính nhân
(2x+1)(x-1)
làm tính chia
(3xy^2+6x^2y-9xy):3xy
các bạn giải giúp mình!!!
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)
\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)
viết lại biểu thức
a: ĐKXĐ: \(x\notin\left\{1;-1;0\right\}\)
b: \(K=\dfrac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+2003}{x}\)
\(=\dfrac{x^2-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+2003}{x}=\dfrac{x+2003}{x}\)
c: Để K là số nguyên thì \(x\inƯ\left(2003\right)\)
hay \(x\in\left\{2003;-2003\right\}\)
a) \(ĐKXĐ:x\ne\pm2\)
b) \(A=\frac{x^2}{x^2-4}-\frac{x}{x-2}+\frac{2}{x+2}\)
\(\Leftrightarrow A=\frac{x^2-x\left(x+2\right)+2\left(x-2\right)}{x^2-4}\)
\(\Leftrightarrow A=\frac{x^2-x^2-2x+2x-4}{x^2-4}\)
\(\Leftrightarrow A=\frac{-4}{x^2-4}\)
c) Thay x = 1 vào A, ta được :
\(A=\frac{-4}{1-4}=\frac{-4}{-3}=\frac{4}{3}\)
a) Để A và B xác định thì \(\hept{\begin{cases}x-1\ne0\\x+1\ne0\\x^2-1\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
Vậy để A và B xác định thì \(x\ne1\); \(x\ne-1\).
b) Ta có : A=B
\(\Rightarrow\frac{x+1}{x-1}+\frac{x-1}{1+x}=\frac{4}{x^2-1}\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2-1}+\frac{\left(x-1\right)^2}{x^2-1}-\frac{4}{x^2-1}=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(x-1\right)^2-4=0\)
\(\Leftrightarrow x^2+2x+1+x^2-2x+1-4=0\)
\(\Leftrightarrow2x^2-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy để A=B thì \(x\in\left\{-1;1\right\}\).