\(\left(\frac{x+14\sqrt{x}-5}{x-24}+\frac{\sqrt{x}}{\sqrt{x}+5}\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

Thay x=9 vào biểu thức \(A=\frac{2\sqrt{x}+1}{\sqrt{x}+2}\), ta được:

\(\frac{2\cdot\sqrt{9}+1}{\sqrt{9}+2}=\frac{2\cdot3+1}{3+2}=\frac{7}{5}\)

Vậy: \(\frac{7}{5}\) là giá trị của biểu thức \(A=\frac{2\sqrt{x}+1}{\sqrt{x}+2}\) tại x=9

Bài 2:

a) Ta có: \(B=\left(\frac{x+14\sqrt{x}-5}{x-25}+\frac{\sqrt{x}}{\sqrt{x}+5}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(=\left(\frac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right)\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(=\frac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(=\frac{2x+10\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\cdot\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}-1}{\sqrt{x}+2}\)

10 tháng 7 2020

Sửa đề :

a) \(A=\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-5}{x-\sqrt{x}-2}\right)\)

\(\Leftrightarrow A=\frac{x-\sqrt{x}+4\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-4-x+\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}\)

b) \(A=4\)

\(\Leftrightarrow\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}=4\)

\(\Leftrightarrow x+3\sqrt{x}+4=4\sqrt{x}+4\)

\(\Leftrightarrow x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy \(A=4\Leftrightarrow x\in\left\{0;1\right\}\)

Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\) a) Rút gọn P b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4 Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1 a) Rút gọn A b) Tìm giá trị của x để biểu thức T = B -...
Đọc tiếp

Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Rút gọn P

b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4

Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1

a) Rút gọn A

b) Tìm giá trị của x để biểu thức T = B - 2A2 đạt GTNN

Bài 3: Cho biểu thức: \(P=\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{2\sqrt{x}+1}{\sqrt{x}+1}\) vs x ≥ 0, x ≠ 1

a) Rút gọn P

b) Tìm giá trị của x để P = \(\frac{3}{4}\)

c) Tìm GTNN của biểu thức A = \(\left(\sqrt{x}-4\right)\left(x-1\right).P\)

Bài 4: Cho biểu thức: \(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}-\frac{1}{1-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\); vs x ≥ 0, x ≠ 1

a) Rút gọn A

b) Tìm x để \(\frac{1}{A}\) là 1 số tự nhiên

3
17 tháng 8 2019
https://i.imgur.com/17SmMAw.jpg
17 tháng 8 2019

Hỏi đáp ToánHỏi đáp Toán

12 tháng 8 2020

a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)

b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)

<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)

<=> \(-x-5\sqrt{x}+14\ge0\)

<=> \(x+5\sqrt{x}-14\le0\)

<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)

<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)

Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)

<=> \(\sqrt{x}\le2\) <=> \(x\le4\)

Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25

và x thuộc Z => x = {0; 1; 2; 3}

d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)

M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))

Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)

Vậy MaxM = 1 khi x = 1

16 tháng 6 2019

\(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(B=\frac{x-\sqrt{x}+3\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)

b/ \(C=\left(\frac{\sqrt{x}-1}{\sqrt{x}-5}.\frac{\sqrt{x}+6}{\sqrt{x}-1}\right).\frac{\sqrt{x}-5}{\sqrt{x}}\)

\(C=\frac{\sqrt{x}+6}{\sqrt{x}-5}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}+6}{\sqrt{x}}=1+\frac{6}{\sqrt{x}}\)

Cai này thì so sánh \(\frac{6}{\sqrt{x}}\) vs 2

Nếu0< x<9\(\Rightarrow\frac{6}{\sqrt{x}}< 2\)

Nếu x=9\(\Rightarrow\frac{6}{\sqrt{x}}=2\)

Nếu x>9\(\Rightarrow\frac{6}{\sqrt{x}}>2\)

16 tháng 6 2019

bài tập nâng cao thì 3=1+2

Mà vế kia cx có 1 thì so sánh 2 cái còn lại chứ!

15 tháng 8 2016

a) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

b) \(\frac{x-1}{\sqrt{y}-1}\cdot\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}+1}\cdot\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}+1}\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

15 tháng 8 2016

a)\(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x+1}\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b)\(\frac{x-1}{\sqrt{y}-1}\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}\cdot\frac{\sqrt{\left(\sqrt{y}-1\right)^{2^2}}}{\sqrt{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}\cdot\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

24 tháng 12 2019

Violympic toán 9