\(\frac{2\sqrt{x}}{\sqrt{x}+1}\)và B= \(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

\(A-B=\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{1-\sqrt{x}}+\frac{3\sqrt{x}-1}{x-1}\)

\(\Leftrightarrow M=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}+\frac{\left(\sqrt{x}+1\right)^2}{x-1}+\frac{3\sqrt{x}-1}{x-1}\)

\(\Leftrightarrow M=\frac{2x-2\sqrt{x}+x+2\sqrt{x}+1+3\sqrt{x}-1}{x-1}=\frac{3x+3\sqrt{x}}{x-1}=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{3\sqrt{x}}{\sqrt{x}-1}\)

Để \(M< 4\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-1}< 4\)

Nếu x>=1

\(\Rightarrow3\sqrt{x}\le4\sqrt{x}-4\)

\(\Leftrightarrow4\le\sqrt{x}\)

\(\Leftrightarrow x\le16\)

Nếu x<1

\(\Rightarrow3\sqrt{x}>4\sqrt{x}-4\)

\(\Leftrightarrow4>\sqrt{x}\)

\(\Rightarrow16>x\)

Ko có x thỏa mãn

6 tháng 7 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne1\end{cases}\Rightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)

\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}.\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(b,M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\)

\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\)\(\Rightarrow\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Rightarrow\frac{2\sqrt{x}-1-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)\(\Rightarrow\frac{\sqrt{x}-2}{2\left(\sqrt{x}+1\right)}< 0\)

Vì \(2\left(\sqrt{x}+1\right)>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\)

\(\Rightarrow\sqrt{x}>\sqrt{4}\Leftrightarrow x>4\)

6 tháng 7 2019

\(M=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\left(x\ge0;x\ne1\right)\)

\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{x-1}\)

\(M=\frac{x+\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}\right)^2-1^2}-\frac{6\sqrt{x}-4}{x-1}\)

\(M=\frac{x-2\sqrt{x}+1}{x-1}\)

\(M=\frac{\left(\sqrt{x}-1\right)^2}{x-1}\)

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

23 tháng 10 2019

a, x = \(\frac{4\left(\sqrt{3}+1\right)}{3-1}-\frac{4\left(\sqrt{3}-1\right)}{3-1}\)

x = \(\left(2\sqrt{3}+2\right)-\left(2\sqrt{3}-2\right)\)

x = \(2\sqrt{3}+2-2\sqrt{3}+2\)

x = 4 (TMĐK)

=> A = \(\frac{2\sqrt{4}+1}{3\sqrt{4}+1}\)

=> A = \(\frac{5}{7}\)

Vậy x = \(\frac{4}{\sqrt{3}-1}-\frac{4}{\sqrt{3}+1}\) thì A = \(\frac{5}{7}\)

b, B = \(\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)

B = \(\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\)

B = \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)

c, \(\frac{B}{A}>2\) <=> \(\frac{2\sqrt{x}+1}{\sqrt{x}+1}:\frac{2\sqrt{x}+1}{3\sqrt{x}+1}\) > 2

<=> \(\frac{3\sqrt{x}+1}{\sqrt{x}+1}>2\)

<=> \(\frac{3\sqrt{x}+1}{\sqrt{x}+1}-2>0\)

<=> \(\frac{3\sqrt{x}+1-2\sqrt{x}-2}{\sqrt{x}+1}>0\)

<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)

\(\sqrt{x}+1>0\) \(\forall\) \(x\in\) ĐKXĐ

=> \(\sqrt{x}-1>0\)

<=> \(\sqrt{x}>1\)

<=> \(x>1\)

Kết hợp ĐKXĐ : x \(\ge0\) ; x \(\ne\) 1

=> x > 1 thì \(\frac{B}{A}>2\)

6 tháng 7 2019

a.

\(M=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b.

\(M< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\\ \Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\\ \Leftrightarrow\frac{2\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}+1\right)}< 0\\ \Leftrightarrow\frac{\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}< 0\\ \Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)

Vậy với \(0\le x< 9;x\ne1\) thì ..........

30 tháng 10 2023

bạn ơi sao bước gộp lại chung mẫu (câua) -4 lại thành +4 vậy ạ

16 tháng 12 2016

a) \(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(x\ge0;x\ne1\right)\)

\(=-\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{3}{\sqrt{x}+1}\)

b) Để \(Q=-1\)

\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow\sqrt{x}+1=3\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

16 tháng 5 2021

a, Với \(x\ge0;x\ne1\)

\(Q=\left(\frac{x-1}{\sqrt{x}-1}-\frac{x\sqrt{x}-1}{x-1}\right):\left(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1-\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1-\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

16 tháng 5 2021

Bạn ghi chuẩn đề chưa vậy

NV
6 tháng 5 2019

ĐKXĐ: \(x\ge0;x\ne1\)

\(A=\left(\frac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{2x+2+2\sqrt{x}}{x+1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\frac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\left(x+\sqrt{x}+1\right)}{x+1}\right)\)

\(=\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(x+1\right)}{2\left(x+\sqrt{x}+1\right)}=\frac{1-\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}\)

\(A\le0\Leftrightarrow\frac{1-\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}\le0\)

\(\Leftrightarrow1-\sqrt{x}\le0\) (do \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\))

\(\Leftrightarrow x\ge1\)

Kết hợp ĐKXĐ ta được \(x>1\)