\(\dfrac{\sqrt[]{4x+4+\dfrac{1}{x}}}{\sqrt{x}.\left|2x^2-x-1\right|}\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

a: \(E=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}\left(x-1\right)}{x-1}:\dfrac{x-1}{\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

b: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

Thay x=2 vào E, ta được: 

\(E=\dfrac{4\cdot2^2}{\left(2-1\right)^2}=16\)

21 tháng 8 2017

Bài 1 :

a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)

= \(2\left|a-3\right|+2\left|a+2\right|\)

\(=2.\left(-a+3\right)+2\left(-a-2\right)\)

b) có sai đề ko ?

c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)

22 tháng 8 2017

tksa @Azue

Bài 3:

a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)

b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)

\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)

2 tháng 8 2017

\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\div\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\dfrac{x-1}{\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{\left(x-1\right)}\times\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

~ ~ ~

\(\dfrac{4x^2}{\left(x-1\right)^2}=2\)

\(\Leftrightarrow4x^2=2\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+4x-2=0\)

\(\Leftrightarrow2\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{2}\\x=-1-\sqrt{2}\end{matrix}\right.\) (nhận)

~ ~ ~

\(x=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)

\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(16-15\right)\left(4+\sqrt{15}\right)}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

= 5 - 3 = 2

\(M=\dfrac{4x^2}{\left(x-1\right)^2}=16\)

2 tháng 8 2017

dodo2003 Áp dụng công thức \(A\sqrt{B}=\sqrt{A^2B}\left(A\ge0\right)\)

13 tháng 8 2017

1) a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|=\sqrt{3}+1-\left(\sqrt{3}-1\right)=\sqrt{3}+1-\sqrt{3}+1=2\)

b) \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}-\dfrac{1}{\sqrt{5}+\sqrt{2}}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)

\(=\left(\dfrac{\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)

\(=\left(\dfrac{\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}\right)^2-\left(\sqrt{2}\right)^2}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)

\(=\left(\dfrac{2\sqrt{2}}{5-2}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}=\left(\dfrac{2\sqrt{2}}{3}+1\right).\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)

\(=\dfrac{3+2\sqrt{2}}{3}.\dfrac{1}{\left(\sqrt{2}+1\right)}=\dfrac{\left(\sqrt{2}+1\right)^2}{3}.\dfrac{1}{\left(\sqrt{2}+1\right)}=\dfrac{1}{3}\)

Bạn Nguyen Van Tuan ơi giải hộ mk baì này tí.Ôn tập Căn bậc hai. Căn bậc ba