Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nói thêm về câu hỏi , câu số 2 thiếu chỗ cuối là ' Chứng tỏ A < 1
#)Giải :
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}\right)\)
Vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{5}{9}>\frac{1}{2}\)
Và \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{10}{19}>\frac{1}{2}\)
\(\Rightarrow B>\frac{1}{4}+\frac{5}{9}+\frac{10}{19}>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)
\(\Rightarrow B>1\)
Ta có:A=\(2+2^2+2^3+...+2^{60}\)
+)A=\(2.\left(1+2+2^2+...+2^{59}\right)\)
\(\Rightarrow\)\(A⋮2\)
+)A=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
A=\(2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)
A=\(2.3+2^3.3+...+2^{59}.3\)
\(\Rightarrow A⋮3\)
Mà 2;3 là 2 số nguyên tố cùng nhau
\(\Rightarrow A⋮2.3\)
\(\Rightarrow A⋮6\)
Học tốt nha!!!
chu kì chữ số tận cùng của 8n là:2,4,6,8,...
Ta có:A=8^2015+8^2016+8^2017+8^2018
A=.....2+....6+......8+.......4
A=........20=.......0 chia hết cho 5
Vậy 8^2015+8^2016+8^2017+8^2018 chia hết cho 5.
Ta có:
72018-32018
=(74)504.72-(3504)4.32
=(...1).(...9)-(...1)-9
=(---9)-(..9)
=(..0)
Vì các số tận cùng là 0 thì chia hết cho 10 nên 72018-32018 chia hết cho 10 hay A chia hết cho 10
Vậy A chia hết cho 10