Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
a)\(\left(3x^2+2xy\right).\left(5xy^2-4x+\frac{1}{3}y^2\right)\)
\(=15x^3y^2-12x^3+x^2y^3+10x^2y^3-8x^2y+\frac{2}{3}xy^4\)
\(=15x^3y^2-12x^3+11x^2y^3-8x^2y+\frac{2}{3}xy^4\)
b)\(\left(x^3-x^2-7x+3\right):\left(x-3\right)\)
\(=\left(x^3-3x^2+2x^2-6x-x+3\right):\left(x-3\right)\)
\(=\left[x^2\left(x-3\right)+2x\left(x-3\right)-\left(x-3\right)\right]:\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+2x-1\right):\left(x-3\right)\)
\(=x^2+2x-1\)
Bài 1 : Ta có :
x^3-x^2-7x-a x-3 x^2 x^3-3x^2 2x^2-7x-a + 2x 2x^2 -6x -x - a - 1 -x + 3
Để \(x^3-x^2-7x-a\) chia hết cho x-3 thì :
-x - a = - x + 3
<=> -x + x - a = 3
<=> a = - 3
Vậy GT của a là - 3
Bài 2 :
a) \(x^2-2xy-9z^2+y^2\)
= \(\left(x^2-2xy+y^2\right)-9z^2\)
= \(\left(x-y\right)^2-\left(3z\right)^2\)
= \(\left(x-y-3z\right)\left(x-y+3z\right)\) (1)
Thay x = 6 ; y=-4 ; z= 30 vào BT (1) ta được :
\(\left(x-y-3z\right)\left(x-y+3z\right)=\left(6+4-3.30\right)\left(6+4+3.30\right)\) = (-80) .100 = -8000
Vậy tại x = 6 ; y=-4 ; z=30 thì GT của BT (1) là -8000
b) \(\left(x^3-y^3\right):\left(x^2+xy+y^2\right)\)
= \(\left(x-y\right)\left(x^2+xy+y^2\right):\left(x^2+xy+y^2\right)\)
= ( x- y ) (2)
Thay x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) vào biểu thức (2) ta được :
\(\left(x-y\right)=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}\)
Vậy tại x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) thì GT của BT (2) là \(\dfrac{1}{3}\)
Bài 1:
a: \(=\dfrac{3x+5-5}{2x}=\dfrac{3x}{2x}=\dfrac{3}{2}\)
b: \(=\dfrac{2x}{x+3}\cdot\dfrac{\left(x+3\right)\left(x-3\right)}{x}=2\left(x-3\right)\)
Bài 2:
=>x^3+x+2x^2+2+a-2 chia hết cho x^2+1
=>a-2=0
=>a=2
Bài 1
a) (6x4y2 - 3x3y3) : 3x3y2 = 6x4y2 : 3x3y2 - 3x3y3 : 3x3y2 = 2x - y
b) (2x - 1)(x2 - x + 3) = 2x3 - 2x2 + 6x - x2 + x - 3 = 2x3 - 3x2 + 7x - 3
Bài 2
1) (x - 2)2 - (x - 3)2 = (x - 2 - x + 3)(x - 2 + x - 3) = 2x - 5>
2) 4x2 - 4xy + 2y2 + 1 = (4x2 - 4xy + y2) + y2 + 1 = (2x - y)2 + y2 + 1 > 0
vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)
1) x2-4x+5+y2+2y=0
<=>x2-4x+4+y2+2y+1=0
<=>(x-2)2+(x+1)2=0
<=>x-2=0 và x+1=0
<=>x=2 và x=-1
2)2p.p2-(p3-1)+(p+3)2p2-3p5
<=>2p3-p3+1+2p3+6p2-3p5
<=>3p3+6p2-3p5+1
3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1
=1
4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3
=-18x2+3(đề sai)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x
=16
Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x
5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0
b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0
6)M+(12x4-15x2y+2xy2+7)=0
<=>M =-(12x4-15x2y+2xy2+7)
<=>M =-12x4+15x2y-2xy2-7
Khi xét xem một đa thức có chia hết cho đơn thức ko , ta chỉ s=xét phân biến ko cần xét hệ số vì phân hệ số có thể là phân số .
A ⋮ B Vì phần biến của mỗi hạng tử trong A đều chia hết cho phần biến ở B