Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
52+ 53 + 54 + ... + 510
= ( 52 + 53 ) + ( 54 + 55 ) + ... + ( 59 + 510 )
= 52.( 1 + 5 ) + 54.(1 + 5 ) + ... + 59.( 1 + 5 )
= 52.6 + 54.6 + ... + 59.6chia hết cho 6
Mà số chia hết cho 6 thì chia hết cho 3
Vậy tổng trên chia hết cho cả 3 và 6
5^2+5^3+5^4+...+5^9+5^10
=(5^2+5^3)+(5^4+5^5)+...+(5^9+5^10)
=(5^2.1+5^2.5)+(5^4.1+5^5.5)+...+(5^9.1+5^9.5)
=5^2.(1+5)+5^4.(1+5)+...+5^9.(1+5)
=5^2.6+5^4.6+...+5^9.6
=6.(5^2+5^4+...+5^9)
=2.3.(5^2+5^4+...+5^9)
Vậy tổng trên chia hết cho 3 và 6
a)
\(P=\dfrac{5}{6}+\dfrac{5}{12}+\dfrac{5}{20}+\dfrac{5}{30}+\dfrac{5}{42}+\dfrac{5}{56}+\dfrac{5}{72}+\dfrac{5}{90}\\ =\dfrac{5}{2.3}+\dfrac{5}{3.4}+\dfrac{5}{4.5}+\dfrac{5}{5.6}+\dfrac{5}{6.7}+\dfrac{5}{7.8}+\dfrac{5}{8.9}+\dfrac{5}{9.10}\\ \Rightarrow\dfrac{1}{5}P=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\\ =\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{5}{10}-\dfrac{1}{10}\\ =\dfrac{4}{10}=\dfrac{2}{5}\\ \Rightarrow P=\dfrac{2}{5}\cdot5=2\)
Ta có :
\(A=1+5+5^2+...+5^{32}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)
\(A=31+31.5^3+...+31.5^{30}\)
\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31
Vậy \(A\) chia hết cho 31
\(a)\) Ta có :
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow\)\(ab+ac< ab+bc\)
\(\Leftrightarrow\)\(ac< bc\)
\(\Leftrightarrow\)\(a< b\)
Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)
Vậy ...
a) \(\dfrac{3}{5}+0,145-\dfrac{1}{200}\)
\(=\dfrac{3}{5}+\dfrac{145}{1000}-\dfrac{1}{200}\)
\(=\dfrac{3}{5}+\dfrac{29}{200}-\dfrac{1}{200}\)
\(=\dfrac{120}{200}+\dfrac{29}{200}-\dfrac{1}{200}\)
\(=\dfrac{148}{200}\)
\(=\dfrac{37}{50}\)
b) \(\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{13}\)
\(=31\dfrac{6}{13}+5\dfrac{9}{41}-36\dfrac{6}{13}\)
\(=\left(31\dfrac{6}{13}-36\dfrac{6}{13}\right)+5\dfrac{5}{41}\)
\(=\left(-5\right)+5\dfrac{5}{41}\)
\(=0\dfrac{5}{41}\)
\(=\dfrac{5}{41}\)
c) \(5.2\dfrac{1}{7}+5.7\dfrac{6}{7}\)
\(=5\left(2\dfrac{1}{7}+7\dfrac{6}{7}\right)\)
\(=5\left(9+\dfrac{1}{7}+\dfrac{6}{7}\right)\)
\(=5\left(9+1\right)\)
\(=5.10\)
\(=50\)
a) \(\dfrac{3}{5}+0,415-\dfrac{1}{200}\)
\(=\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{1}{200}\\ =\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{1}{200}\\ =\dfrac{120+83-1}{200}=\dfrac{202}{200}=\dfrac{101}{100}\)
b)\(\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{13}\)
\(=\left(\dfrac{409}{13}+\dfrac{214}{41}\right)-\dfrac{474}{13}\)
\(=\dfrac{19551}{533}-\dfrac{474}{13}=\dfrac{9}{41}\)
c)\(5.2\dfrac{1}{7}+5.7\dfrac{6}{7}\)
\(=5.\dfrac{15}{7}+5.\dfrac{55}{7}\\ =5\left(\dfrac{15}{7}+\dfrac{55}{7}\right)\\ =5.10=50\)
a) \(A=1.2+2.3+3.4+...+29.30\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+29.30\left(31-28\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+29.30.31-28.29.30\)
\(\Rightarrow3A=29.30.31\)
\(\Rightarrow A=29.30.31:3\)
\(\Rightarrow A=29.10.31\)
\(\Rightarrow A=8990\)
3A= 1.2.3+2.3.4+3.4.3 +......+ 29.30.3
3A= 1.2. ﴾3 ‐ 0﴿ + 2.3.﴾4 ‐ 1﴿ +3.4. ﴾5 ‐ 2﴿....... . 29.30. ﴾31 ‐ 28﴿
3A = ﴾1.2.3 + 2.3.4 + 3.4.5 +...... +18.20.21﴿ ‐ ﴾0.1.2 + 1.2.3 + 2.3.4 +.......+ 18.19.20﴿
3A = 29.30.31 ‐ 0.1.2
3A =26970‐0
3A= 26970
A=26970:3
A = 8990.
Vậy A=8990
\(a)\dfrac{-5}{13}+\left(-\dfrac{8}{13}+1\right)\\ =\dfrac{-5}{13}+\dfrac{-8}{13}+1\\ =0+1=1\)
\(b)\dfrac{2}{3}+\left(\dfrac{3}{8}+\dfrac{-2}{3}\right)\\ =\dfrac{2}{3}-\dfrac{2}{3}+\dfrac{3}{8}\\ =\dfrac{3}{8}\)
\(c)\left(\dfrac{-3}{4}+\dfrac{5}{8}\right)+\dfrac{-1}{8}=\dfrac{-3}{4}+\dfrac{4}{8}\\=\dfrac{-6}{8}+\dfrac{4}{8}=\dfrac{-2}{8}=\dfrac{-1}{4}\)