Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Mình chỉ làm đc bài 1 thôi nhé)
Bài 1:
A = 1 + 2 + 3 + 4 +...+999
2A= (1+999)+(2+998)+(3+997)+...+(999+1)
Ta nhận thấy các kết quả của các tổng trong ngoặc trên đều bằng 1000 (số chẵn), mà các số chia hết cho 2 là số chẵn, suy ra A chia hết cho 2
Tổng các số trong dãy bằng
2+4+6+....+14=56 chia hết cho 4
Khi thay một số dấu "+" bằng một số dấu "-" trước một số thì kết quả mới sẽ thua 2 lần số sau dấu "-" mà tất cả các số trong dãy đều là số chẵn nên khi thay như vậy H vẫn sẽ chia hết cho 2*2=4
mà -18 không chia hết cho 4 nên Bạn tuấn tính sai
A = 2 + 22 + 23 + 24 + ... + 29 + 210
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 29 + 210 )
A = ( 1 + 2 ) . 2 + ( 1 + 2 ) . 23 + ... + ( 1 + 2 ) . 29
A = 3 . 2 + 3 . 23 + ... + 3 . 29
A = 3 . ( 2 + 23 + ... + 29 )
=> A chia hết cho 3
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+210\right)=2\left(2^0+2^1\right)+2^3\left(2^0+2^1\right)+... \)
\(2^0=1,2^1=2,2^0+2^1=3\)
Cách 1 " 274 + (158 + 26) = 274 + 184 = 458
Cách 2" 274 + (158 + 26) = 274 + 158 + 26 = (274 + 26) + 158 = 300 + 158 = 458
a/ \(M=1+3+3^2+.....+3^{119}\)
\(\Leftrightarrow3M=3+3^2+.....+3^{119}+3^{120}\)
\(\Leftrightarrow3M-M=\left(3+3^2+.....+3^{120}\right)-\left(1+3+....+3^{119}\right)\)
\(\Leftrightarrow2M=3^{120}-1\)
\(\Leftrightarrow M=\dfrac{3^{120}-1}{2}\)
b/ \(M=1+3+3^2+..........+3^{119}\)
\(=\left(1+3+3^2\right)+........+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=1\left(1+3+3^2\right)+........+3^{117}\left(1+3+3^2\right)\)
\(=1.13+.....+3^{117}.13\)
\(=13\left(1+.....+3^{117}\right)⋮13\Leftrightarrow M⋮13\left(đpcm\right)\)
biểu thức đó bằng 270 bạn ạ mình giải luôn :
15 x 19 - 63 : 3 + 4 + 2 = 285 - 21 + 4 +2
= 264 + 6
=270