\(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{y^2+5}+y\right)=5\). tính x+y?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

11 tháng 8 2015

tính x+y chứ      

11 tháng 8 2015

Đặt \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)=5\)là A

Nhân 2 vế A cho \(\sqrt{x^2+5}-x\)ta được:

\(5.\left(y+\sqrt{y^2+5}\right)=5.\left(\sqrt{x^2+5}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+5}=\sqrt{x^2+5}-x\)

\(\Leftrightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}\left(1\right)\)

Nhân 2 vế A cho \(\sqrt{y^2+5}-y\) ta được:

\(5.\left(x+\sqrt{x^2+5}\right)=5.\left(\sqrt{y^2+5}-y\right)\)

\(\Leftrightarrow x+\sqrt{x^2+5}=\sqrt{y^2+5}-y\)

\(\Leftrightarrow x+y=\sqrt{y^2+5}-\sqrt{x^2+5}\left(2\right)\)

từ (1) và (2) suy ra:

\(x+y-\left(x+y\right)=\sqrt{x^2+5}-\sqrt{y^2+5}-\left(\sqrt{y^2+5}-\sqrt{x^2+5}\right)\)

\(\Leftrightarrow2\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)=0\)

\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}=0\)

\(\Rightarrow x+y=\sqrt{x^2+5}-\sqrt{y^2+5}=0\)

NV
24 tháng 9 2019

\(x-y=\sqrt{29+12\sqrt{5}}=2\sqrt{5}+3\)

\(A=x^3-y^3+x^2+y^2+xy-3xy\left(x-y+1\right)+2019\)

\(=\left(x-y\right)\left(x^2+y^2+xy\right)+x^2+y^2+xy-3xy\left(x-y+1\right)+2019\)

\(=\left(x-y+1\right)\left(x^2+y^2+xy\right)-3xy\left(x-y+1\right)+2019\)

\(=\left(x-y+1\right)\left(x^2+y^2-2xy\right)+2019\)

\(=\left(x-y+1\right)\left(x-y\right)^2+2019\)

\(=\left(4+2\sqrt{5}\right)\left(3+2\sqrt{5}\right)^2+2019\)

\(=2255+106\sqrt{5}\)