K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Ta có: \(x^3-y^3-x^2+2xy-y^2\)

\(=x^3-y^3-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

Thế vào, biến đổi rồi tính 

21 tháng 11 2017

Hình như đề bài sai ở đâu đó

Ta có: 

\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(x^2-2xy+y^2\right)+\left(x-y\right)3xy-\left(x-y\right)^2\)

\(=\left(x-y\right)^3+\left(x-y\right)3xy-\left(x-y\right)^2=5^3+5\times3\times6-5^2=190\)

18 tháng 11 2018

\(x^3-y^3-x^2+2xy-y^2\)

\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+y^2-xy\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left[\left(x-y\right)^2+2xy-xy\right]-\left(x-y\right)^2\)

\(=\left(x-y\right)\left[\left(x-y\right)^2+xy\right]-\left(x-y\right)^2\)

\(=\left(-5\right)\left[\left(-5\right)^2-6\right]-\left(-5\right)^2\)

\(=\left(-5\right)\left(25-6\right)-25\)

\(=\left(-5\right).21-25\)

\(=-105-25=-130\)

18 tháng 11 2018

\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-x+y\right)\)

Đến đây thì ko bk lm nx

6 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha: :

Link :   https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách

OK N

12 tháng 11 2019

\(x^3-y^3-x^2+2xy-y^2\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

\(=5\left[\left(x-y\right)^2+3xy\right]-5^2\)

\(=5\left[5^2+3.\left(-6\right)\right]-25\)

\(=5\left[25-18\right]-25\)

\(=5.7-25=35-25=10\)

NM
12 tháng 8 2021

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

23 tháng 7 2018

Bài 2:

\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)

\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)

23 tháng 7 2018

Bài 1:

a)  \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b)  \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)

c)  \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

d)  \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)

\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\left(1\right)\)

Xét : \(\left(x-y\right)^2=x^2+y^2-2xy\)

Thay \(\hept{\begin{cases}x-y=-7\\xy=-6\end{cases}\left(3\right)}\)vào , ta được :

\(x^2+y^2=49-12=37\left(2\right)\)

Thay \(\left(2\right)\),\(\left(3\right)\)vào \(\left(1\right)\)vào , ta có giá trị của biểu thức tương đương với :

\(-7\left(37-6\right)-\left(-7^2\right)=-7.31-49=-266\)