\(\dfrac{a}{b}+\dfrac{b}{c}=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Ta có : a/b + b/c = 1 <=> (ac+b2)/(bc) (1)

c/a=-1 <=> c= -a => -3abc = +3c2b2 = 3(bc)2(2)

Ta có :

M = [(ac)3+(b2)3]/(bc) 3

<=> [(ac+b2)((ac)2-acb2+(b2)2]/(bc)3

<=> [( ac+b2)((ac) 2+2acb2+(b2)2 -3acb2]/(bc)3

<=> [(ac+b2)*((ac+b2)-3acb2)]/(bc)3

<=> [(ac+b2)/bc)] *[ (ac+b2)-3acb2)]/(bc)2

Từ( 1),(2) thay vào bt trên ta có 

<=>1*[ (ac+b2)+3(cb)2]/(bc)2]

<=> 3+ [(ac+b) 2/(bc) 2]

<=> 3+[(ac+b )/(bc )] 2

<=> 3+12=4

Vậy M =4

31 tháng 5 2018

Ta có: \(a+\dfrac{1}{b}=-4\)

\(\Rightarrow\left(a+\dfrac{1}{b}\right)^3=\left(-4\right)^3\)

\(\Rightarrow a^3+3.a^2.\dfrac{1}{b}+3.a.\dfrac{1}{b^2}+\dfrac{1}{b^3}=-64\)

\(\Rightarrow a^3+\dfrac{3a^2}{b}+\dfrac{3a}{b^2}+\dfrac{1}{b^3}=-64\)

\(\Rightarrow a^3+\dfrac{1}{b^3}=-64-\dfrac{3a^2}{b}-\dfrac{3a}{b^2}\)

\(\Rightarrow a^3+\dfrac{1}{b^3}=-64-\dfrac{3a}{b}\left(a+\dfrac{1}{b}\right)\)

\(\Rightarrow a^3+\dfrac{1}{b^3}=-64-3.\left(-4\right).\left(-4\right)\)

\(\Rightarrow a^3+\dfrac{1}{b^3}=-112\)

1 tháng 6 2018

\(P=a^3+\dfrac{1}{b^3}\\ =\left(a+\dfrac{1}{b}\right)\left(a^2+\dfrac{a}{b}+\dfrac{1}{b^2}\right)\\ =-4\left(a^2+\dfrac{2a}{b}+\dfrac{1}{b^2}-\dfrac{a}{b}\right)\\ =-4\left[\left(a+\dfrac{1}{b}\right)^2-\dfrac{a}{b}\right]\\ =-4\left[\left(-4\right)^2-\left(-4\right)\right]\\ =-80\)

15 tháng 7 2018

\(a+\dfrac{1}{b}=\dfrac{a}{b}\Leftrightarrow\dfrac{ab+1}{b}=\dfrac{a}{b}\Leftrightarrow ab+1=a\left(1\right)\)

\(\dfrac{a}{b}=-4\Leftrightarrow a=-4b\left(2\right)\)

Thay (2) vào (1), ta được:

\(-4b^2+1=-4b\)

\(\Rightarrow-4b^2+4b+1=0\)

\(\Rightarrow-4\left(b^2+b-\dfrac{1}{4}\right)=0\)

\(\Rightarrow-4\left(b^2+2\cdot b\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+2=0\)

\(\Rightarrow-4\left(b+\dfrac{1}{2}\right)^2=-2\)

\(\Rightarrow\left(b+\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}b+\dfrac{1}{2}=\sqrt{\dfrac{1}{2}}\\b+\dfrac{1}{2}=-\sqrt{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=\dfrac{-1+\sqrt{2}}{2}\\b=\dfrac{-1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}b=\dfrac{-1+\sqrt{2}}{2}\\a=2-2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}b=\dfrac{-1-\sqrt{2}}{2}\\a=2+2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy ..................................

4 tháng 5 2017

á mk xl nhá mk ko đọc kĩ đề mk làm nhầm rùi bài mk làm là tìm GTNN nhá bạn ( mất công quábucminh)

4 tháng 5 2017

ta có A= a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)

= \(\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c}{4}+\dfrac{3c}{4}+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)

=\(\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\)

vì a,b,c >0 ===> \(\dfrac{3a}{4}>0,\dfrac{3}{a}>0,\dfrac{b}{2}>0,\dfrac{9}{2b}>0,\dfrac{c}{4}>0,\dfrac{4}{c}>0\)

áp dụng BĐT côsi cho các cặp số dương ta đc:

\(\dfrac{3a}{4}+\dfrac{3}{a}>=2.\sqrt{\dfrac{3a}{4}.\dfrac{3}{a}}=3\)

\(\dfrac{b}{2}+\dfrac{9}{2b}>=3\)(làm như trên nhá)

\(\dfrac{c}{4}+\dfrac{4}{c}>=2\)

===> \(\dfrac{3a}{4}+\dfrac{3}{a}+\dfrac{b}{2}+\dfrac{9}{2b}+\dfrac{c}{4}+\dfrac{4}{c}>=8\left(1\right)\)

có: \(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}=\dfrac{a+2b+3c}{4}\)

mà a+2b+3c >= 20

===> \(\dfrac{a+2b+3c}{4}>=\dfrac{20}{4}=5\)

===> \(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}>=5\left(2\right)\)

từ (1) và(2)===> a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}>=13\)

===> A >= 13

Dấu ''='' xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{3a}{4}=\dfrac{3}{a}\\\dfrac{b}{2}=\dfrac{9}{2b}\\\dfrac{c}{4}=\dfrac{4}{c}\\a+2b+3c=20\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

Vậy Min A=13 <=>\(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

8 tháng 9 2018

a ) \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Do \(a^2\ge0;b^2\ge0;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )

Thay * vào biểu thức M , ta được :

\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)

\(=-1^{1999}+0+1^{2001}\)

\(=-1+0+1\)

\(=0\)

Vậy \(M=0\)

8 tháng 9 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)

\(\Leftrightarrow bc+ac+ab-1=0\)

\(\Leftrightarrow bc+ac+ab=1\)

\(a^2+b^2+c^2=1\)

\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)

\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)

\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

\(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)

\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)

\(\Rightarrow P=1+1+1=3\)

Vậy \(P=3\)

6 tháng 10 2018

Theo BĐT Bu nhi a cốp xki ta có :

\(\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\ge16\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\)

Áp dụng vào bài toán ta có :

\(\dfrac{1}{3a+3b+2c}=\dfrac{1}{16}.\dfrac{16}{\left(a+b\right)+\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}\le\dfrac{1}{16}\left(\dfrac{1}{a+b}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

\(\dfrac{1}{3b+3c+2a}=\dfrac{1}{16}.\dfrac{16}{\left(b+c\right)+\left(b+c\right)+\left(a+b\right)+\left(c+a\right)}\le\dfrac{1}{16}\left(\dfrac{1}{b+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{c+a}\right)\)

\(\dfrac{1}{3c+3a+2b}=\dfrac{1}{16}.\dfrac{16}{\left(c+a\right)+\left(c+a\right)+\left(a+b\right)+\left(b+c\right)}\le\dfrac{1}{16}\left(\dfrac{1}{c+a}+\dfrac{1}{c+a}+\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)

Cộng từng vế của BĐT ta được :

\(\dfrac{1}{3a+3b+2c}+\dfrac{1}{3b+3c+2a}+\dfrac{1}{3c+3a+2b}\le\dfrac{1}{16}\left(\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\right)=\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{4}.6=\dfrac{3}{2}\)

Vậy GTLN của A là \(\dfrac{3}{2}\) . Dấu \("="\) xảy ra khi \(a=b=c=\dfrac{1}{4}\)

19 tháng 11 2017

GIÚP MIK NHANH NHANH NHA MẤY CẬU!

14 tháng 12 2017

a3+b3+c3=3abc

=>a3+b3+c3-3abc=0

=>a3+3a2b+3ab2+b3-3abc-3a2b-3ab2=0

=>(a3+3a2b+3ab2+b3)+c3-(3abc+3a2b+3ab2)=0

=>(a+b)3+c3-3abc(1+a+b)=0

=>(

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)