K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

Hướng dẫn: Ta biết rằng, năng lượng liên kết riêng của hạt càng lớn thì hạt càng bền vững. Do vậy, ta tính năng lượng liên kết riêg của từng hạt trên rồi sắp xếp theo thứ tự tăng dần thôi bạn.

 

15 tháng 3 2016

Câu này của bạn vừa được trả lời rồi.

15 tháng 3 2016

Câu hỏi của Thư Hoàngg - Học và thi online với HOC24

12 tháng 4 2016

Ta có: \(^{23}_{11}Na \rightarrow ^{22}_{11}Na+^1_0n\)

Năng lượng cần để bứt một nơ trôn ra khỏi hạt nhân của \(^{23}_{11}Na\) bằng năng lượng thu vào của phản ứng trên,

Tính bằng: \((21,9944+1,008665-22,9897).931=12,42MeV\)

Chọn A.

Chúc bạn học tốt hihi và nhớ tích đúng cho mình nhé hehe

12 tháng 4 2016

ok thanks leuleu

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow p + _8^{17} O\)

 \(m_t-m_s = m_{\alpha}+m_N - (m_p+m_O) = -1,281.10^{-3}u < 0\), phản ứng là thu năng lượng.

Sử dụng công thức: \(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,285.10^{-3}.931 = K_{\alpha}+K_N-( K_p+K_O)\) (do N đứng yên nên KN = 0)

=> \(K_{O} = 1,5074MeV.\)

Áp dụng định luật bảo toàn động lượng

P P α p P α O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_O \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

\(P_{\alpha}^2+ P_{p}^2 -2 P_{\alpha}P_{p}\cos{\alpha} = P_{O}^2\)

=> \(\cos {\alpha} = \frac{P_{\alpha}^2+P_p^2-P_O^2}{2P_{\alpha}.P_{p}} = \frac{2m_{\alpha}K_{\alpha}+2m_pK_P-2.m_O.K_O}{2.\sqrt{2.m_{\alpha}K_{\alpha}.2.m_p.K_p}} \)

=> \(\alpha \approx 52^016'\).

 

 

6 tháng 4 2016

Cảm ơn lời giải của bạn Hoc247 nhé.

8 tháng 4 2016

\(_1^1p + _3^7 Li \rightarrow 2_2^4He\)

Nhận xét: \(m_t-m_s = m_{Li}+m_p - 2m_{He} = 0,0185u > 0\), phản ứng là tỏa năng lượng.

Sử dụng công thức: \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)

=> \(0,0185.931 = 2K_{He}- K_p\) (do Li đứng yên nên KLi = 0)

=> \(K_{He} = 9,342MeV.\)

Áp dụng định luật bảo toàn động lượng

PPααpPα12

\(\overrightarrow P_{p} =\overrightarrow P_{He1} + \overrightarrow P_{He2} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

\(P_{He2}^2+ P_{He1}^2 +2 P_{He1}P_{He2}\cos{\alpha} = P_{P}^2\)

Mà \(P_{He1} = P_{He2}\)

=> \(1+\cos {\alpha} = \frac{P_p^2}{2P_{He}^2} = \frac{2.1.K_p}{2.2.m_{He}K_{He}} \)

=> \(\alpha \approx 168^039'.\) 

 

 

18 tháng 4 2016

áp dụng định lí hàm cos trong tam giác thì:

a gần bằng 168o39'( 168 độ, 39 phút)

nhớ là gần bằng thui nha

28 tháng 5 2016

168o36'

29 tháng 5 2016

16836'

28 tháng 4 2016

ban đầu bản phải viết phương trình ra mới làm được loại này :

Li73 +11p => 2. 42X (heli)

sau đó dùng ct: ΔW=(mtrước -msau).c2 =>  1 hạt LI tạo RA 2 hạt heli và bao nhiêu năng lượng =>> 1,5gX là bao nhiêu hạt sau đó nhân lên. 

 

 

 

V
violet
Giáo viên
29 tháng 4 2016

\(^1_1p+^7_3Li\rightarrow ^4_2X + ^4_2X\)

Năng lượng toả ra của phản ứng: \(W_{toả}=(1,0087+7,0744-2.4,0015).931=74,5731MeV\)

Số hạt X là: \(N=\dfrac{1,5}{4}.6,02.10^{23}=2,2575.10^{23}\)(hạt)

Cứ 2 hạt X sinh ra thì toả năng lượng như trên, như vậy tổng năng lượng toả ra là: 

\(\dfrac{2,2575.10^{23}}{2}.74,5731=8,27.10^{24}MeV\)

6 tháng 4 2016

\(_{84}^{210}Po \rightarrow_Z^A X + _2^4He\)

\(m_t-m_s = m_{Po}-(m_X + m_{He}) = 5,805.10^{-3}u > 0\), phản ứng là tỏa năng lượng.

=> \(W_{tỏa} = (m_t-m_s)c^2 = K_s-K_t\)

=> \(5,805.10^{-3}.931,5 = K_X+K_{He}\) (do hạt nhân Po đứng yên nen KPo = Ktruoc = 0)

=> \( K_X+K_{He}=5,4074MeV.(1)\)

Áp dụng định luật bảo toàn động lượng

\(\overrightarrow P_{Po} =\overrightarrow P_{He} + \overrightarrow P_{X} = \overrightarrow 0\)

=> \(P_{He} = P_X\)

=> \(m_{He}.K_{He} =m_X. P_X.(2)\)

Thay mHe= 4,002603 u;  mX = 205,974468 u vào (2). Bấm máy giải hệ phương trình được nghiệm

\(K_{He}= 5,3043 \ \ MeV => v_{He} = \sqrt{\frac{2.5,3043.10^6.1,6.10^{-19}}{4,002603.1,66055.10^{-27}}} \approx 1,6.10^7 m/s.\)

 

 

 

8 tháng 4 2016

mik nghĩ C

nhưng dựa vào định luật bảo tàng động lượng thì xác xuất tỉ lệ chỉ là gần bằng mà thôi nó cũng tương ứng vs 50% còn phải tùy vào sự may mắn hay đáp án nx

mik giải ra là gần bằng 1,6.10^7 m/s

14 tháng 6 2016

Bán kính của các hạt nhân chuyển động trong từ trường có biểu thức 

\(R=\frac{mv}{qB}\)

=> \(R_{\alpha}=\frac{m_{\alpha}v_0}{q_{\alpha}B}=\frac{4.v_0}{2.q_e.B}=\frac{2v_0}{q_eB}.\left(1\right)\)

\(R_p=\frac{m_pv_0}{q_pB}=\frac{1.v_0}{q_e.B}=\frac{v_0}{q_eB}.\left(2\right)\)

\(R_T=\frac{m_Tv_0}{q_TB}=\frac{3.v_0}{q_e.B}=\frac{3v_0}{q_eB}.\left(3\right)\)

trong đó q là điện tích của hạt nhân = Z.q(e)

              m là khối lượng hạt nhân = A(u)

Như vậy \(R_T>R_{\alpha}>R_T\)

V
violet
Giáo viên
20 tháng 4 2016

\(m_t = m_{Cl}+ m_p = 37,963839u.\)

\(m_s = m_{Ar}+ m_n = 37,965559u.\)

\(m_t < m_s\), phản ứng là thu năng lượng.

Năng lượng thu là 

\(E = (m_s-m_t)c^2 = 1,72.10^{-3}.931 MeV/c^2.c^2= 1,60132MeV. \)