\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=2012\). Tính 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2015

\(A=\frac{a^2+\left(b^2-a^2\right)}{a+b}+\frac{b^2+\left(c^2-b^2\right)}{b+c}+\frac{c^2+\left(a^2-c^2\right)}{c+a}\)

\(A=\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)+\left(\frac{b^2-a^2}{a+b}+\frac{c^2-b^2}{b+c}+\frac{a^2-c^2}{c+a}\right)=2012+\left(b-a+c-b+a-c\right)=2012\)

26 tháng 8 2015

\(A=\frac{a^2+\left(b^2-a^2\right)}{a+b}+\frac{b^2+\left(c^2-b^2\right)}{b+c}+\frac{c^2+\left(a^2-c^2\right)}{c+a}\)

\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\left(\frac{b^2-a^2}{a+b}+\frac{c^2-b^2}{b+c}+\frac{a^2-c^2}{c+a}\right)=2012+\left(b-a+c-b+a-c\right)=2012\)

1 tháng 8 2016

a) \(A=\frac{a^2}{cb}+\frac{b^2}{ca}+\frac{c^2}{ab}\)

\(A=\frac{a^2.a+b^2.b+c^2.c}{abc}\)

\(A=\frac{a^3+b^3+c^3}{abc}\left(1\right)\)

Ta lại có: \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(-c\right)\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\left(2\right)\)

Lấy (2) thay vào (1), ta được:

\(\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)

31 tháng 7 2016

a) cho a+b+c=0a+b+c=0 và abc khác 0 Tính a2(a2−b2−c2)+b2(b2−c2−a2)+c2(c2−b2−a2)
b) B mình k biết

6 tháng 4 2017

1 bai thoi cung dc

25 tháng 1 2019

1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab

Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac

Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)

\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)

2. tương tự

3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng

31 tháng 10 2019

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)

\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)

\(\Rightarrow bcx+acy+abz=0\)

Lại có:\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)

\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{bcx+acy+abz}{xyz}=4\)(bình phương hai vế)

\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)(Vì \(bcx+acy+abz=0\))

31 tháng 10 2019

Từ (1) \(\Rightarrow bcx+acy+abz=0\)

Gọi \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\left(2\right)\)

Từ (2) \(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{ab}{xy}+\frac{ac}{xz}+\frac{bc}{yz}\right)=0\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=4-\left(\frac{abz+acy+bcx}{xyz}\right)\)

\(=4\)

\(b,\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)

Từ \(a+b+c=0\Rightarrow a+b=-c\Rightarrow a^2+b^2-c^2=-2ab\)

Tương tự \(b^2+c^2-a^2=-2bc\)và \(c^2+a^2-b^2=-2ac\)

\(\Rightarrow\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=\frac{1}{-2}+\frac{1}{-2}+\frac{1}{-2}\)

\(=-\frac{3}{2}\)

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.