Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có: f(x) +3f(1/x) =x^2 với mọi x thuộc R
mà f(2)
=> f(2) +3f(1/2) = 2^2 =4 (1)
=> 3f(2) +f(1/2) =1/4 => 9f(2) +3f(1/2) = 3/4 (2)
=> (2) -(1) = 9f(2) +3f(1/2) - f(2) - 3f(1/2)
= 8f(2) = 3/4 -4
= -13/4
=> 8f(2) = -13/4
f(2) = -13/4 :8
f(2) = -13/32
p/s nha bn !!!!

Với x=2 ta có \(f\left(2\right)-3f\left(\frac{1}{2}\right)=4\left(1\right)\)
Với x=1/2 ta có:\(f\left(\frac{1}{2}\right)-3f\left(2\right)=\frac{1}{4}\Rightarrow3f\left(\frac{1}{2}\right)-9f\left(2\right)=\frac{3}{4}\left(2\right)\)
Lấy (1) cộng (2) ta có
\(\Rightarrow f\left(2\right)-3f\left(\frac{1}{2}\right)+3f\left(\frac{1}{2}\right)-9f\left(2\right)=4+\frac{3}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{19}{4}\)
\(\Rightarrow f\left(2\right)=-\frac{19}{32}\)

Ta có: \(\left(0+1\right).f\left(0\right)+3f\left(1-0\right)=2.0+7\)
\(\Rightarrow f\left(0\right)+3f\left(1\right)=7\Rightarrow3f\left(0\right)+9f\left(1\right)=21\) (1)
\(\left(1+1\right)f\left(1\right)+3f\left(1-1\right)=2.1+7\)
\(\Rightarrow2f\left(1\right)+3f\left(0\right)=9\)(2)
Từ (1) và (2) ta được: \(3f\left(0\right)+9f\left(1\right)-2f\left(1\right)-3f\left(0\right)=21-9\)
\(\Rightarrow7f\left(1\right)=12\Rightarrow f\left(1\right)=\frac{12}{7}\)
Khi đó: \(f\left(0\right)=7-3f\left(1\right)=7-3.\frac{12}{7}=\frac{13}{7}\)

a) Chỉ là thay số nên bạn tự làm nhé.
b) \(y_1=1\), \(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\), \(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.
Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\), \(k\)chẵn thì \(y_k=0\)(1).
Khi đó ta có:
\(A=y_1+y_2+...+y_{2021}\)
\(A=1+0+1+...+1\)
\(A=\frac{2021-1}{2}+1=1011\)
Thế x = 2 và x = \(\frac{1}{2}\)và phương trình đầu ta được
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(\frac{1}{2}\right)=\frac{1}{4}-3f\left(2\right)\left(1\right)\\f\left(2\right)+3.\left(\frac{1}{4}-3f\left(2\right)\right)=4\left(2\right)\end{cases}}\)
Ta có: (2) <=> 32f(2) + 13 = 0
\(\Leftrightarrow f\left(2\right)=\frac{-13}{32}\)
Tham gia cho nó đông vui.vắng vẻ quá
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\3f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\end{cases}}\)
Trừ cho nhau
\(8f\left(2\right)=\left(\frac{3}{4}-4\right)=-\frac{13}{4}\Rightarrow f\left(2\right)-\frac{13}{32}\)
P/s: Với giá trị nào của x thì f(x) nhận giá trị không âm