Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nhóm x^2 và y^2 ; x và y
b) Nhóm 3 hạng tử đầu lại vs nhau . Sau cùng xuất hiện nhân tử chung là 3
c) Nhóm 2 hạng tử đầu với nhau. ba hạng tử còn lại với nhau .
d) .....
D,ghép đầu với cuối là hằng dẳng thức 2 cái giữa với nhau là nhân tử chung là 3x
a) ( 2x +3)2 + (2x-3)2 + (2x+3)(4x-6) + xy
= (2x+3)2 + 2(2x+3)(2x-3) + xy
= \([\) (2x+3) + (2x-3) \(]\)2 + xy
= (4x)2 + xy = 16x2 + xy = x(16 + y)
b) x2 + x - y2 + y
= (x2 - y2 ) + ( x + y )
= (x+y)(x-y) + (x+y)
= (x+y)(x-y+1)
c) 3x2 + 3y2 - 6xy - 12
= 3(x2 + y2 - 2xy - 4)
= 3[ (x-y)2 -22 ] = 3(x-y-2)(x-y+2)
d) x3 -x + 3x2y + 3xy2 -y + y3
= ( x3 + 3x2y + 3xy2 + y3 ) - (x + y)
= (x+y)3 - (x+y)
= (x+y)[ (x+y)2 - 1 ] = (x+y)(x+y-1)(x+y+1)
e) 2018x2 - 2019x + 1 = 0
=> 2018x2 - 2018x - x + 1 = 0
=> 2018x(x-1) - (x-1) = 0
=> (x-1)(2018x-1) = 0
=> \(\left[{}\begin{matrix}x-1=0\\2018x-1=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2018}\end{matrix}\right.\)
\(a,P=3x^2-2x+3y^2-2y+6xy-100\)
\(P=3\left(x^2+y^2\right)-\left[2\left(x+y\right)\right]+6xy-100\)
\(P=3\left(x^2+y^2+2xy-2xy\right)-2.5+6xy-100\)
\(P=3\left(x+y\right)^2-6xy-10+6xy-100\)
\(P=3.25-10-100\)
\(P=-35\)
\(b,Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x^2+y^2+2xy-2xy\right)+3xy.5-4xy+3.5+10\)\(Q=5.\left(x^2+y^2+2xy-3xy\right)-2\left(x+y\right)^2+4xy+15xy-4xy+25\)
\(Q=5.5-15xy-2.25+15xy+25\)
\(Q=25-50+25=0\)
a) P= 3x2 -2x + 3y2-2y + 6xy -100
= (3x2+ 3y2 + 6xy) - 2(x+y) -100
=3(x2 + y2 +2xy) - 2(x+y) -100
=3(x+y)2 - 2(x+y) -100
=3 . 52 -2 .5 -100
=35
b) Q=x3 + y3 -2x2 -2y2 + 3xy (x+y) -4xy + 3(x+y) + 10
=(x3 +y3) + 3xy (x+y) + 3(x+y) -4xy -2x2 -2y2 + 10
=(x+y) (x2 -xy +y2 ) + 3xy (x+y) + 3 (x+y) - 2 (2xy + x2 +y2 ) + 10
=(x+y) (x2 -xy +y2 + 3xy ) + 3(x+y) -2 (2xy + x2 + y2 ) + 10
=(x+y) (x2 +2xy +y2 ) + 3(x+y) - 2(x+y)2 + 10
= (x+y)3 + 3(x+y) - 2 (x+y)2 + 10
=53 + 3.5 -2. 52+ 10
=100
A=3(x2+2xy+y2)-2(x+y)-100=3(x+y)2-2.5-100=3.52-110=-35
B=x3+3x2y+3xy2+y3-2(x2+2xy+y2)+3(x+y)+10=(x+y)3-2(x+y)2+3.5+10=53-2.52+25=100
trả lời:
A=3(x2+2xy+y2)-2(x+y)-100
=3(x+y)2-2.5-100
=3.52-110
=-35
B=x3+3x2y+3xy2+y3-2(x2+2xy+y2)+3(x+y)+10
=(x+y)3-2(x+y)2+3.5+10
=53-2.52+25
=100
học tốt
P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y
= ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)
= ( x+ y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+ y)
= ( x+ y)^3 - 3 ( x+ y)^2 + 3(x +y)
Thay x+ y = 101 ta có :
= 101^3 - 3.101^2 + 3.101
= 101 . ( 101^2 - 3.101 + 3 )
= 101 .9901
= 1000001