\(3a^2+3b^2=10ab\) và a > b > 0, tính \(\frac{a+b}{a-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(3a^2+3b^2=10ab\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=\frac{16ab}{2}\left(1\right)\\\left(a-b\right)^2=\frac{4ab}{3}\left(2\right)\end{cases}}\)

Lấy (1) chia (2) ta được:

\(\left(\frac{a+b}{a-b}\right)^2=6\Rightarrow\frac{a+b}{a-b}=\sqrt{6}\)

16 tháng 7 2015

\(3a^2+3b^2=10ab\Rightarrow3a^2-10ab+3b^2=0\Rightarrow3ab-9ab-ab-3b^2=0\)

\(=>3a\left(a-3b\right)-b\left(a-3b\right)=0\Rightarrow\left(3a-b\right)\left(3b-a\right)=0\)

=>3a  =b hoặc 3b = a  ( loại b>a>0 ) 

thay 3a = b ta có 

    \(P=\frac{3a-b}{3a+b}=\frac{2a}{4a}=\frac{1}{2}\)

7 tháng 11 2016

minh ko biet bai nay

Xin loi minh ko dup duoc

6 tháng 9 2017

Xét: P2 = \(\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{10ab-6ab}{10ab+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\)

=> P = \(\dfrac{1}{2}\)

8 tháng 8 2017

\(3a^2+3b^2=10ab\)

\(\Leftrightarrow\left(3a^2-9ab\right)+\left(3b^2-ab\right)=0\)

\(\Leftrightarrow3a\left(a-3b\right)+b\left(3b-a\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=\dfrac{1}{3}b\end{matrix}\right.\)

Vì a>b>0 nên a=3b

\(\Rightarrow P=\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{2b}{4b}=\dfrac{1}{2}\)

20 tháng 2 2018

a,b,c>0 => ab+bc+ca=0 Amazing !!

21 tháng 2 2018

Nhầm ab+ac+bc>=3

29 tháng 8 2017

Áp dụng Cauchy Schwarz dạng Engel ta có :

\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

26 tháng 7 2019

Ta có:

\(\frac{a+b}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3a\right)}}\) (nhân 2 vào cả tử và mẫu)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3a}{2}}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}^{\left(đpcm\right)}\) (áp dụng BĐT Cô si vào cái mẫu)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}4a=a+3b\\4b=b+3a\end{matrix}\right.\Leftrightarrow a=b\)

26 tháng 7 2019

Áp dụng BĐT Côsi ta có:

\( \sqrt {4a\left( {3a + b} \right)} \le \dfrac{{4a + 3a + b}}{2} = \dfrac{{7a + b}}{2}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} \le \dfrac{{7a + b}}{4}\\ \sqrt {4b\left( {3b + a} \right)} \le \dfrac{{4b + 3b + a}}{2} = \dfrac{{7b + a}}{2}\\ \Rightarrow \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a}}{4}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a + 7a + b}}{4} = 2\left( {a + b} \right)\\ \Rightarrow \dfrac{{a + b}}{{\sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} }} \ge \dfrac{1}{2} \)

Dấu "=" xảy ra\(\left\{{}\begin{matrix}4a=3a+b\\4b=3b+a\end{matrix}\right.\Leftrightarrow a=b\)