\(\in\) N ) . Chứng minh rằng 10a + b chia hết c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

Có sai đề ko 

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

19 tháng 12 2015

TÍCH CHO TAU KO TAU GOI CHolm TRỪ ĐIỂM MI

7 tháng 11 2015

Ta có: (3a+2b)-2(10a+b) = -17a chia hết cho 17

the bài ra: 3a+2b chia hết cho17 =>2(10a+b) chia hết cho 17

mà 2 không chia hết cho 17 =>10a+b chia hết cho17 => điều phải chứng minh 

 

15 tháng 4 2016

Đặt: 3a+2b=x và 10a+b=y

Xét hệ thức:

 x-2y =3a+2b-2.(10a+b)

         =3a+2b-20a-2b

         =(3a-20a)+(2b-2b)

         =a.(3-20)+0

         =a.(-17) chia hết cho 17 (1)

Mà 3a+2b chia hết cho 13

=> 3a chia hết cho 17 (2)

Từ (1) và (2) => 10a+b chia hết cho 17 (đpcm)

10 tháng 6 2017

a, Ta có: 7a5b1 \(⋮\)3 => 7 + a + 5 + b + 1 \(⋮\)3

                               => 13 + a + b \(⋮\)3

                               => a + b chia 3 dư 2           (1)

Mà a - b = 4 nên 4 \(\le\) a \(\le\) 9

                         0 \(\le\) b \(\le\) 5

Suy ra 4 \(\le\)a + b \(\le\)14                            (2)

Mặt khác a - b chẵn nên a + b chẵn                     (3)

Từ (1);(2) và (3) suy ra a + b \(\in\){8;14}

+) Với a + b = 8 ; a - b = 4 => a = 6, b = 2

+) Với a + b = 14 ; a - b = 4 => a = 9, b = 5

Vậy...

b, Giả sử 10a + b \(⋮\)17

=> 2(10a + b) \(⋮\)17

=> 2(10a + b) - (3a + 2b) \(⋮\)17

=> 20a + 2b - 3a - 2b \(⋮\)17

=> 17a \(⋮\)17 (đúng)

=> Giả sử đúng

Vậy 10a + b \(⋮\)17

10 tháng 6 2017

Số 7a5b1 đang có tổng là 13

Vì thế:

Dự đoán:

nếu 5 -1 = 4 mà bên kia lại là 19 thì sai

nếu 6 - 2 = 4 thì bên kia lại là 21 là đúng 

Vì thế a = 6 và b = 4

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

29 tháng 1 2017

a, Giả sử 10a + b \(⋮\) 17         (1)

Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17

=> 24a + 16b \(⋮\) 17                             (2)

Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17

=> 10a + b + 24a + 16b \(⋮\) 17

=> (10a + 24a) + (16b + b) \(⋮\) 17

=> 34a + 17b \(⋮\) 17

=> 17(2a + b) \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\)17 (đpcm)

b, Giả sử 10a + b \(⋮\) 17        (1)

Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17

=> 7a - 35b \(⋮\) 17                  (2)

Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17

=> 10a + b + 7a - 35b \(⋮\) 17

=> (10a + 7a) + (b - 35b) \(⋮\) 17

=> 17a + (-34b) \(⋮\) 17

=> 17.[a + (-2)b] \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\) 17 (đpcm)

22 tháng 11 2021
23456789:123
5 tháng 2 2020

\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)

  \(\Rightarrow4\left(3a+2b\right)⋮17\)

\(\Rightarrow12a+8b⋮17\)

\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)

\(\text{#Not_chắv_:)}\)

5 tháng 2 2020

a. Ta có :

    2(10a + b) - (3a+2b)

= 20a+2b-3a-2b

= 17a

Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17

                => 2( 10a+b) - (3a+2b) \(\vdots\) 17

Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17

 Mà (2,17)=1 => 10a+b \(\vdots\) 17

Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17

b. Câu b cx tương tự nha

28 tháng 11 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

18 tháng 12 2015

Ta có: 17a chia hết cho 17

suy ra :17a+3a+b chia hết cho 17

suy ra :20a+2b chia hết cho 17

rút gọn cho 2

suy ra :10a+b a hết cho 17

do 3a+2b⋮⋮17

\Rightarrow⇒8(3a+2b)⋮⋮17

     Ta có 8(3a+2b)+10a+b

=24a+16b+10a+b

=34a+17b

17(2a+b)⋮⋮17

vậy 8(3a+2b)+10a+b  ⋮⋮17

             mà 8(3a+2b)⋮⋮17               (\forall∀a,b\in∈N)

      nên 10a+b⋮⋮17

16 tháng 6 2019

\(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a\)\(⋮\)\(17\)với \(\forall a\in N\)

Vì \(3a+2b\)\(⋮\)\(17\)với \(\forall a\in N\)

\(\Rightarrow2\left(10a+b\right)\)\(⋮\)\(17\)

\(\Leftrightarrow10a+b\)\(⋮\)\(17\)với \(\forall x\in N\)