Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé! Phần mềm trên này khó căn chuẩn
Vì \(AH\perp BC\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\Rightarrow AH^2+BH^2=AB^2\) ( ĐL Pytago )
Thay số : \(\Rightarrow AH^2+3^2=5^2\Leftrightarrow AH^2=5^2-3^2=25-9=16\Leftrightarrow AH=4\left(cm\right)\)
Có \(BH+HC=BC\Rightarrow HC=BC-BH=8-3=5\left(cm\right)\)
Vì \(\Delta AHC\) có \(\widehat{AHC}=90^0\Rightarrow AH^2+HC^2=AC^2\) ( ĐL Pytago )
\(\Rightarrow AC^2=4^2+5^2=16+25=41\Leftrightarrow AC=\sqrt{41}\left(cm\right)\)
A B C H
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\)
\(\Rightarrow AH=4\left(cm\right)\)
Ta có: \(BH+CH=BC\)\(\Rightarrow HC=BC-BH=8-3=5\)( cm )
Xét \(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow AC^2=AH^2+HC^2=4^2+5^2=16+25=40\)
\(\Rightarrow AC=\sqrt{40}=2\sqrt{10}\)( cm )
Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;
AH2+BH2=AB2
=>AH2=AB2-BH2=52-32
=>AH2=25-9=16
=>AH=+(-)4
mà AH>0 =>AH=4 cm
Lại có;
BH+HC=BC
=>HC=BC-BH=8-3
=>HC=5 cm
Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:
AC2=AH2+HC2
=>AC2=42+52=16+25
=>AC2=41
=>AC=+(-)√41
Mà AC >0 =>AC=√41cm
Vậy AH=4 cm; HC=5 cm ; AC= √41cm
A C B H
Áp dụng định lý Py-ta-go và tam giác AHB vuông tại H:
=>AH2+HB2=AB2
Áp dụng định lý Py-ta-go vào tam giác AHC vuông ở H:
=>AC2=CH2+AH2
=> AB2-AC2=(AH2+BH2)-(AH2+HC2)
=> AB2-AC2=AH2+BH2-AH2-HC2=BH2-HC2
Vậy AB2-AC2=BH2-HC2
b)
Ta có:AH2+HB2=AB2=>AB2-AH2=HB2
AC2=CH2+AH2=>AC2-AH2=CH2
Lại có:
AC<AB=> AC2<AB2
AH2=AH2
=> AB2-AH2>AC2-AH2
=>BH>HC(dpcm)
A B C H 20 cm 9 cm 16cm 16cm
Độ dài cạnh BC là :
9 + 16 = 25 ( cm )
Có tam giác ABC vuông tại A
=> Áp dụng theo định lý Pi - ta - go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=25^2-20^2\)
\(\Rightarrow AB^2=225\)
\(\Rightarrow AB=\sqrt{225}=15\left(cm\right)\)
Có AH vuông góc vs BC
Áp dụng theo định lý Py - ta - go ta có:
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AH^2=AB^2-HB^2\)
\(\Rightarrow AH^2=15^2-9^2\)
\(\Rightarrow AH^2=144\)
\(\Rightarrow AH=\sqrt{144}=12\left(cm\right)\)
B A C H 9 16 20
BC = ?
BC - BH + CH
Mà BH = 9N cm ( gt ) ; CH = 16 cm ( gt )
\(\Rightarrow\)BC = 9 + 16
BC = 25 cm
AB = ?
Vì \(\Delta\)ABC \(⊥\)tại A
Áp dụng định lí pi - ta - go, ta có :
AB2 = BC2 - AC2
Mà BC = 25 cm ; AC = 20 cm ( gt )
\(\Rightarrow\)AB2 = 252 - 202
AB2 = 225
AB = 15 cm
AH = ?
Vì \(\Delta\)ABH\(⊥\)tại H
Áp dụng định lí Pi - ta - go , ta có :
AH2 = AB2 - BH2
Mà AB = 15 cm ( cmt ); BH = 9 cm ( gt )
\(\Rightarrow\)AH2 = 152 - 92
AH2 = 144
AH = 12 cm
1: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(BC\cdot AH=AB\cdot AC\)
2:
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)
A B C H
Giải:
Trong \(\Delta AHB\) vuông tại H, áp dụng định lí Py-ta-go ta có:
\(AB^2=BH^2+AH^2\) (1)
Trong \(\Delta AHC\) vuông tại H, áp dụng định lí Py-ta-go ta có:
\(AC^2=AH^2+HC^2\) (2)
Cộng 2 vế (1) và (2) ta có: \(AB^2+AC^2=BH^2+AH^2+HC^2+AH^2\)
\(\Rightarrow AB^2+AC^2=BH^2+HC^2+2AH^2\left(đpcm\right)\)
Vậy...
Bạn tự vẽ hình nha.
a) Xét tam giác ABH và tam giác ACH
Ta có: Góc AHB = Góc AHC ( = 90 độ )
AB = AC ( Vì tam giác ABC cân )
Góc ABH = Góc ACH ( Vì tam giác ABC cân )
=> Tam giác ABH = Tam giác ACH ( ch-gn )
=> HB = HC ( hai cạnh tương ứng )
Góc BAH = Góc CAH ( Hai góc tương ứng 0
=> Đpcm
b) Vì HB = HC ( câu a )
Mà BC = HB + HC
=> HB = HC = BC / 2 = 8 / 2 = 4 cm
Xét tam giác ABH vuông tại H
=> AH2 + BH2 = AB2
Hay AH2 + 42 = 52
=> AH2 = 52 - 42
=> AH2 = 9
=> AH = 3
c) Xét tam giác AHD và tam giác AHE
Ta có: Góc ADH = Góc AEH ( = 90 độ )
AH là cạnh huyển chung
Góc BAH = Góc CAH ( câu a )
=> Tam giác AHD = Tam giác AHE ( ch-gn )
=> HD = HE ( Hai cạnh tương ứng )
=> Tam giác HDE cân tại H
=> Đpcm