\(b\ge c\ge0\); \(a\inℝ\). Chứng minh: 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

Đề cần cm \(\Leftrightarrow bc\le2c^2-b^2\)

 \(\Leftrightarrow2c^2-b^2-bc\le0\)

\(\Leftrightarrow\left(c+b\right)\left(c-b\right)+c\left(c-b\right)\le0\)

\(\Leftrightarrow\left(c-b\right)\left(2c+b\right)\le0\)

Luôn đúng

25 tháng 8 2019

Bui Huyen nhìn chị giải mà em thấy cách mình giải trâu bò quá:( Em sáng tác tưởng khó ai ngờ..

Ta có: \(ab+bc+ca=\left(a-b\right)b+\left(b-c\right)\left(b+c\right)+c\left(a+b+c\right)\)

\(\ge\left(a-b\right)b+c\left(a+b+c\right)\)\(\ge\left(a-b\right)b+c\left(a+2c\right)\)

\(=2c^2+ac-b^2+ab\).

Cách em là thế đó

7 tháng 1 2018

Vì \(0\le a;b;c\le1\) \(\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\)

\(\Rightarrow a+b^2+c^3-ab-bc-ac\le a+b+c-ab-bc-ac\)

\(=\left(-1+a+b+c-ab-bc-ac+abc\right)-abc+1\)

\(=\left(1-a\right)\left(1-b\right)\left(1-c\right)-abc+1\)

Do \(1\ge a;b;c\ge0\) nên \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\-abc\le0\end{cases}}\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc\le0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc+1\le1\)

Hay \(a+b^2+c^3-ab-bc-ca\le1\)(đpcm)

Do\(1\ge a,b,c\ge0\)

\(\Rightarrow b\ge b^2,c\ge c^3\)

Do đó: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)(1)

Vì \(1\ge a,b,c\ge0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(\Rightarrow a+b+c-ab-bc-ca+abc-1\le0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\)

Mà \(abc\ge0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1\)(2) 

Từ (1) và (2) => đpcm

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

NV
25 tháng 3 2019

Biến đổi tương đương:

\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)

b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)

\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

25 tháng 3 2019

Cám ơn

24 tháng 3 2020

\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)

\(\Rightarrow a+b^2+c^3\le a+b+c\)

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)

=> đpcm

28 tháng 3 2018

        \(\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

     \(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra   \(\Leftrightarrow\)\(a=b=c\)

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

20 tháng 9 2018

a) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow\left(a+b+c\right)^2=\left(a+b+c\right)^2\)( hằng đẳng thức mở rộng )

Ta có: \(\Leftrightarrow\left(a+b+c\right)^2=\left(a+b+c\right)^2\)

\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

                                                                    đpcm

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+a^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2\ge0\)( BĐT luôn đúng )

\(\Rightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)

                                         đpcm

Tham khảo nhé~

20 tháng 9 2018

a,\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

b,Ta có :\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

11 tháng 1 2017

Câu b nhá mn

11 tháng 1 2017

quá dễ BĐTAM-GM sẽ cân tất cả