Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(0\le a;b;c\le1\) \(\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\)
\(\Rightarrow a+b^2+c^3-ab-bc-ac\le a+b+c-ab-bc-ac\)
\(=\left(-1+a+b+c-ab-bc-ac+abc\right)-abc+1\)
\(=\left(1-a\right)\left(1-b\right)\left(1-c\right)-abc+1\)
Do \(1\ge a;b;c\ge0\) nên \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\-abc\le0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc\le0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)-abc+1\le1\)
Hay \(a+b^2+c^3-ab-bc-ca\le1\)(đpcm)
Do\(1\ge a,b,c\ge0\)
\(\Rightarrow b\ge b^2,c\ge c^3\)
Do đó: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\)(1)
Vì \(1\ge a,b,c\ge0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)
\(\Rightarrow a+b+c-ab-bc-ca+abc-1\le0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1-abc\)
Mà \(abc\ge0\)
\(\Rightarrow a+b+c-ab-bc-ca\le1\)(2)
Từ (1) và (2) => đpcm
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
Biến đổi tương đương:
\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b=c\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)
b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)
\(\Rightarrow a+b^2+c^3\le a+b+c\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
=> đpcm
\(\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\)\(a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
\(a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
a) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow\left(a+b+c\right)^2=\left(a+b+c\right)^2\)( hằng đẳng thức mở rộng )
Ta có: \(\Leftrightarrow\left(a+b+c\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
đpcm
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+a^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2\ge0\)( BĐT luôn đúng )
\(\Rightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)
đpcm
Tham khảo nhé~
a,\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
b,Ta có :\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Đề cần cm \(\Leftrightarrow bc\le2c^2-b^2\)
\(\Leftrightarrow2c^2-b^2-bc\le0\)
\(\Leftrightarrow\left(c+b\right)\left(c-b\right)+c\left(c-b\right)\le0\)
\(\Leftrightarrow\left(c-b\right)\left(2c+b\right)\le0\)
Luôn đúng
Bui Huyen nhìn chị giải mà em thấy cách mình giải trâu bò quá:( Em sáng tác tưởng khó ai ngờ..
Ta có: \(ab+bc+ca=\left(a-b\right)b+\left(b-c\right)\left(b+c\right)+c\left(a+b+c\right)\)
\(\ge\left(a-b\right)b+c\left(a+b+c\right)\)\(\ge\left(a-b\right)b+c\left(a+2c\right)\)
\(=2c^2+ac-b^2+ab\).
Cách em là thế đó