Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(B=\frac{x^4}{x+xy}+\frac{y^4}{y+xy}\ge\frac{\left(x^2+y^2\right)^2}{x+y+2xy}\ge\frac{\left(x+y\right)^4}{4\left(x+y+2\right)}=\frac{a^4}{4\left(a+2\right)}\)
Ta có \(x+y\ge2\sqrt{xy}=2\Rightarrow a\ge2\)
Ta cần \(\frac{a^4}{4\left(a+2\right)}\ge1\Leftrightarrow a^4\ge4a+8\Leftrightarrow\frac{1}{2}a^4+\frac{1}{2}a^4\ge4a+8\)
Ta có\(\frac{1}{2}a^4\ge\frac{1}{2}.16=8;a^3\ge8\Rightarrow\frac{1}{2}a^4\ge4a\Rightarrow a^4\ge4a+8\)
=> B>=1
dấu = xảy ra <=> x=y=1
Tìm x :
a) ( x - 15 ) . 35 = 0
x - 15 = 0 : 35
x - 15 = 0
x = 0 + 15
x = 15
b) 32 ( x - 10 ) = 32
x - 10 = 32 : 32
x - 10 = 1
x = 1 + 10
x = 11
\(\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{x^2-xy+y^2}+\frac{1}{x}+\frac{1}{y}=1+\frac{3xy}{x^3+y^3}+1+\frac{x}{y}+1+\frac{y}{x}\ge5\)
Sao không ai trả lời vậy, mình trả lời vui thôi không chắc đúng nha
\(B=\frac{x^4}{x+xy}+\frac{y^4}{y+xy}\ge\frac{\left(x^2+y^2\right)^2}{x+y+2xy}\ge\frac{4x^2y^2}{x+y+2}=\frac{4}{x+y+2}\)
Vì x,y nguyên dương và xy=1 nên\(x,y\le1\Rightarrow B\ge\frac{4}{2+2}=1\)
a
Dễ thấy theo AM - GM ta có:
\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{y}{x}+\frac{x}{4y}\right)+\frac{3x}{4y}\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{4y}}+\frac{3\cdot2y}{4y}=\frac{5}{2}\)
Đẳng thức xảy ra tại \(x=2y\)
b
\(x^2+3+\frac{1}{x^2+3}=\left[\frac{\left(x^2+3\right)}{9}+\frac{1}{x^2+3}\right]+\frac{8\left(x^2+3\right)}{9}\)
\(\ge2\sqrt{\frac{x^2+3}{9}\cdot\frac{1}{x^2+3}}+\frac{8\left(x^2+3\right)}{9}=\frac{2}{3}+\frac{8\cdot3}{9}=\frac{10}{3}\)
Đẳng thức xảy ra tại x=0
Biến đổi từ giả thiết
\(x^3+y^3+6xy\le8\)
\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)
\(\Leftrightarrow x+y-2\le0\)
(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))
\(\Leftrightarrow x+y\le2\)
Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)
Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)
\(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)
Dấu "=" <=> a= b = 1
Bài 1:
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+(\frac{x}{4y}+\frac{y}{x})-2\)
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{x}{4y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)
\(\frac{7x}{4y}\geq \frac{7.2y}{4y}=\frac{7}{2}\) do $x\geq 2y$
Do đó: \(P\geq \frac{7}{2}+1-2=\frac{5}{2}\)
Vậy $P_{\min}=\frac{5}{2}$ khi $x=2y$
Bài 2:
\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}=\frac{x^2+y^2}{\frac{1}{4}}+\frac{1}{4(x^2+y^2)}=4(x^2+y^2)+\frac{1}{4(x^2+y^2)}\)
Áp dụng BĐT Cô-si :
\(\frac{x^2+y^2}{4}+\frac{1}{4(x^2+y^2)}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{4(x^2+y^2)}}=\frac{1}{2}(1)\)
\(x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|=2.\frac{1}{2}=1\)
\(\Rightarrow \frac{15(x^2+y^2)}{4}\geq \frac{15}{4}(2)\)
Lấy \((1)+(2)\Rightarrow P\geq \frac{15}{4}+\frac{1}{2}=\frac{17}{4}\)
Vậy \(P_{\min}=\frac{17}{4}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Yêu cầu chứng minh \(B\ge1\) là đáp án đúng cho bài toán này.
Không giải!
Dễ thấy đề sai nếu cho x = y = 1 .