\(\frac{\sqrt{x}-5}{\sqrt{x}+1}\). Tìm x để B \(\in\) Z...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Ta có: B = \(\frac{\sqrt{x}-5}{\sqrt{x}+1}\) = \(\frac{\sqrt{x}+1-1-5}{\sqrt{x}+1}\) = \(\frac{\sqrt{x}+1-6}{\sqrt{x}+1}\) = \(\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{-6}{\sqrt{x}+1}\) = 1 + \(\frac{-6}{\sqrt{x}+1}\)

\(\Rightarrow\) Để B \(\in\) Z thì -6 \(⋮\) \(\sqrt{x}+1\) \(\Rightarrow\sqrt{x}+1\inƯ\left(-6\right)\)

Mà Ư(-6) = {-6; -1; 1; 6}

* \(\sqrt{x}+1\) = -6

\(\Rightarrow\) \(\sqrt{x}\) = -7

\(\Rightarrow\) x = 49

* \(\sqrt{x}+1\) = -1

\(\Rightarrow\sqrt{x}\) = -2

\(\Rightarrow\) x = 4

* \(\sqrt{x}+1\) = 1

\(\Rightarrow\) \(\sqrt{x}\) = 0

\(\Rightarrow\) x = 0

* \(\sqrt{x}+1\) = 6

\(\Rightarrow\sqrt{x}\) = 5

\(\Rightarrow\) x = 25

Vậy để B = \(\frac{\sqrt{x}-5}{\sqrt{x}+1}\) \(\in\) Z thì x = {0; 4; 25; 49}

3 tháng 11 2016

để B thuộc Z => \(\frac{\sqrt{x}-5}{\sqrt{x}+1}\) là số nguyên

=> \(\sqrt{x}-5⋮\sqrt{x}+1\)

=> \(\sqrt{x}-5-\left(\sqrt{x}+1\right)⋮\sqrt{x}+1\\ \Rightarrow-6⋮\sqrt{x}+1\)

=> \(\sqrt{x}+1\inƯ_{\left(-6\right)}=\left\{1;-1;6;-6\right\}\)

ta có bảng sau:

\(\sqrt{x}+1\)1-16-6
\(\sqrt{x}\)0-25-7
x0 loại25

loại

vậy x = { 0; 25 }

14 tháng 10 2018

a) Gọi biểu thức trên là A.

 \(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)

Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:

\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.

Vậy có 1 nghiệm là x = 0

b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)

\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)

Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!

c) Tương tự như trên,bạn tự làm

d) Tương tự như câu a),bạn tự làm. Mình lười òi =))

B nguyên

(=) căn x-1 thuộc ước 5 = { -5 ; -1 ; 1 ; 5 }

=> x-1 thuộc { 1 ; 25 }( vì (-1)2 = 1 ; (-5)2 =25 )

=> x thuộc { 0 , 24 }

có j sai sai chủ thớt hơi , lp 7 đã học căn thức đâu

học tốt

quên 2 và 26 nha

mik lm hơi ẩu tí

sorry

học tốt

31 tháng 5 2017

Để B có giá trị nguyên

=> 5 chia hết cho \(\sqrt{x}-1\)

=> \(\sqrt{x}-1\) thuộc Ư(5) = {1 ; -1 ; 5 ; -5}

Ta có bảng sau :

\(\sqrt{x}-1\)1                     -1                          5                         -5                       
x4036 không có giá trị
31 tháng 5 2017

Để B thuộc Z=> 5/ căn x - 1 thuộc Z => 5 : hết cho căn x -1

=> căn x-1 thuộc Ư(5) => căn x - 1 thuộc { -5;-1;1;5}

=> căn x thuộc{ -4; 0; 2; 5}

=> x thuộc{16; 0; 4; 25}

19 tháng 3 2018

\(a)\)  Ta có : \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}-1}+\frac{2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Thay \(x=\frac{16}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được : 

\(A=1+\frac{2}{\sqrt{\frac{16}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{4}{3}\right)^2}-1}=1+\frac{2}{\frac{4}{3}-1}=1+\frac{2}{\frac{1}{3}}=1+6=7\)

Vậy giá trị của \(A=7\) khi \(x=\frac{16}{9}\)

Thay \(x=\frac{25}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được : 

\(A=1+\frac{2}{\sqrt{\frac{25}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{5}{3}\right)^2}-1}=1+\frac{2}{\frac{5}{3}-1}=1+\frac{2}{\frac{2}{3}}=1+3=4\)

Vậy giá trị của \(A=4\) khi \(x=\frac{25}{9}\)

\(b)\) Để \(A=5\) thì \(1+\frac{2}{\sqrt{x}-1}=5\)

\(\Rightarrow\)\(\frac{2}{\sqrt{x}-1}=4\)

\(\Rightarrow\)\(\frac{1}{\sqrt{x}-1}=\frac{1}{2}\)

\(\Rightarrow\)\(\sqrt{x}-1=2\)

\(\Rightarrow\)\(\sqrt{x}=3\)

\(\Rightarrow\)\(x=3^2\)

\(\Rightarrow\)\(x=9\)

Vậy để \(A=5\) thì \(x=9\)

\(c)\) Để \(A\inℤ\) thì \(1+\frac{2}{\sqrt{x}-1}\inℤ\)

\(\Rightarrow\)\(2⋮\left(\sqrt{x}-1\right)\)

\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)

Suy ra : 

\(\sqrt{x}-1\)\(1\)\(-1\)\(2\)\(-2\)
\(x\)\(4\)\(0\)\(9\)\(1\)

Vậy để \(A\inℤ\) thì \(x\in\left\{0;1;4;9\right\}\)

Chúc bạn học tốt ~