Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c^2=\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\frac{c^2}{a^2+b^2}\) (đpcm)
Nếu làm như kia thì fải là nhỏ hơn hoặc bằng chứ
Nhân chia đổi chiều mà
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Chúc bạn học tốt !!!
Trả lời :
Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)
Study ưell
Không chắc
Từ đề bài \(\Rightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\) (AM-GM)
Tương tự \(\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\end{cases}}\)
Nhân các vế tương ứng của các bđt vừa cm đc ta có :
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)\(\Rightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)
=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)
=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)
=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)
=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)
Khi đó Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)
= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020
= 1 + 1 + 1 = 3
Vậy P = 3
Ta có: \(a+b+c=abc\)
=>\(\frac{a+b+c}{abc}=1\)
=>\(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\)
=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
=>\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
=>ĐPCM
À thấy rồi, làm nè :
Ta có 1/a^2 + 1/b^2 + 1/c^2
= (1/a + 1/b + 1/c)^2 - 2 (1/ab + 1/ac + 1/bc)
= 4 - 2 (c/abc + b/ abc + a/ abc)
= 4 - 2 (a+b+c)/abc
= 4 - 2abc / abc
= 4 - 2
= 2 (đpcm)