K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Chọn C.

Ta có: m(x - m) ≤ x - 1 ⇔ mx - m 2  ≥ x - 1 ⇔ (m - 1)x ≥  m 2  - 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

+) Với m < 1 ⇒ m – 1 < 0 ⇒ Tập nghiệm của bất phương trình là S = ( - ∞ ;m+1].

+) Với m > 1 ⇒ m – 1 > 0 ⇒ Tập nghiệm của bất phương trình là S = [m+1; + ∞ ).

2 tháng 1 2020

Đáp án C

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
7 tháng 5 2016

Đặt \(t=3^x,t>0\)

Bất phương trình trở thành :

\(m.t^2+9\left(m-1\right)t+m-1>0\)

\(\Leftrightarrow m\left(t^2+9t+1\right)>9t+1\)

\(\Leftrightarrow m>\frac{9t+1}{t^2+9t+1}\)

Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :

\(m>max_{t>0}\frac{9t+1}{t^2+9t+1}\)

Xét hàm số \(f\left(t\right)=\frac{9t+1}{t^2+9t+1};t>0\)

Ta có : \(f'\left(t\right)=\frac{-9t-2}{\left(t^2+9t+1\right)^2}< 0,t>0\)

đây là hàm nghịch biến suy ra \(f\left(t\right)< f\left(0\right)=1\)

Do đó : \(\frac{9t+1}{t^2+9t+1}< 0,t>0\) nên các giá trị cần tìm là \(m\ge1\)

NV
20 tháng 1 2021

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)

a: Ta có: \(\left(m-1\right)x^2-2x-m+1=0\)

a=m-1; b=-2; c=-m+1

\(ac=\left(m-1\right)\left(-m+1\right)=-\left(m-1\right)^2< 0\forall m\)

Do đó: Phương trình luôn có hai nghiệm trái dấu

b: \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(\dfrac{2}{m-1}\right)^2-2\cdot\dfrac{-m+1}{m-1}=6\)

\(\Leftrightarrow\dfrac{4}{\left(m-1\right)^2}=4\)

\(\Leftrightarrow\left(m-1\right)^2=1\)

=>m-1=1 hoặc m-1=-1

=>m=2 hoặc m=0

30 tháng 1 2016

bpt (1) \(\Leftrightarrow x\in\left(-5;3\right)\)=> S1=(-5;3)

bpt (2):

Nếu m=-1 =>S2=\(\varnothing\)

Nếu m>-1 =>S2=\(\left[\frac{3}{m+1};+\infty\right]\)

Nếu m<-1 => S2=\(\left[-\infty;\frac{3}{m+1}\right]\)

Hệ có nghiệm \(\Leftrightarrow S1\cap S2\ne\varnothing\)

Nếu m=-1 =>\(S1\cap S2=\varnothing\)   (Loại)

Nếu m>-1 =>\(S1\cap S2\ne\varnothing\)

Nếu m<-1 =>\(S1\cap S2\ne\varnothing\)

30 tháng 1 2016

vì sao mà hệ có nghiệm thì S1 giao S2 phải khác tập hợp rỗng ? mà tại sao bạn lại biện luận bất phương trình như vậy ? 

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn