\(f\left(x\right)\le g\left(x\right),x_0\) là một nghiệm của bất phư...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Vẽ đồ thị:

Giải bài 5 trang 106 SGK Đại Số 10 | Giải toán lớp 10Giải bài 5 trang 106 SGK Đại Số 10 | Giải toán lớp 10

15 tháng 3 2018

a) Xét f(u) = \(\dfrac{u^p}{p}+\dfrac{v^q}{q}-uv,u\ge0\)

( Xem v > 0 vì v = 0 : BĐT luôn đúng )

f '(u) = up-1 - v = 0 \(\Leftrightarrow\) up-1 = v \(\Leftrightarrow\) u = \(v^{\dfrac{q}{p}}\)

Vẽ bảng biến thiên ( tự vẽ )

Vậy \(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\)

b)* Nếu \(\int\limits^b_a\left|f\left(x\right)\right|^pdx=0\) hay \(\int\limits^b_a\left|g\left(x\right)\right|^qdx=0\)thì \(f\equiv0\)hay \(g\equiv0\) BĐT luôn đúng

Xét \(\int\limits^b_a\left|f\left(x\right)\right|^pdx>0\)\(\int\limits^b_a\left|g\left(x\right)\right|^qdx>0\)

Áp dụng BĐT câu (a) :

Với \(\left\{{}\begin{matrix}u=\dfrac{\left|f\left(x\right)\right|}{\left(\int\limits^b_a\left|f\left(x\right)\right|^pdx\right)^{\dfrac{1}{p}}}>0\\v=\dfrac{\left|g\left(x\right)\right|}{\left(\int\limits^b_a\left|g\left(x\right)\right|^qdx\right)^{\dfrac{1}{q}}}>0\end{matrix}\right.\)

\(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\left(1\right)\)

Lấy tích phân từ a \(\rightarrow\) b 2 vế BĐT (1) ta được :

\(\int\limits^b_auvdx\le\dfrac{1}{p}+\dfrac{1}{q}=1\)

Vậy : \(\int\limits^b_a\left|f\left(x\right).g\left(x\right)\right|dx\le\left(\int\limits^b_a\left|f\left(x\right)^p\right|dx\right)^{\dfrac{1}{p}}\left(\int\limits^b_a\left|g\left(x\right)^q\right|dx\right)^{\dfrac{1}{q}}\)

\(\Rightarrow\)(Đpcm )

NM
8 tháng 12 2020

đồ thị hai hàm parabol có một điểm chung khi chúng có chung đỉnh

hay đỉnh I(1,3) của f(x) cũng là đỉnh của g(x)

dẫn đến giá trị nhỏ nhất của hai hàm là bằng nhau.

thế nên bài này sai ngay từ đề bài rồi nhé

hay nói cách khác , không tồn tại hai số a b thỏa mãn điều kiện trên

26 tháng 4 2017

\(f\left(-2\right)-f\left(1\right)=\left(-2\right)^2+2+\sqrt{2-\left(-2\right)}-\left(1^2+2+\sqrt{2-1}\right)\) \(=8-4=4\).
\(f\left(-7\right)-g\left(-7\right)=\left(-7\right)^2+2+\sqrt{2-\left(-7\right)}-\left(-2.\left(-7\right)^3-3.\left(-7\right)+5\right)=-658\)

24 tháng 2 2020

giúp mình với mình đang cần gấp

13 tháng 4 2017

a)

f(x) giao trục tại hai Điểm có hoành độ x1=-4; x2=-2

g(x) giao trục hoành duy nhất một điểm hoành độ x=m/2

Ôn tập chương IV

b) f(x) >g(x) => điểm m/2 phải trong khoảng (-4,-2)

\(-4< \dfrac{m}{2}< -2\Leftrightarrow-8< m< -4\)

NV
1 tháng 6 2020

Gọi pt d có dạng \(y=ax+b\)

\(f\left(x\right)-g\left(x\right)\le0\Leftrightarrow x^2-ax-b\le0\)

Do nghiệm của BPT là \(\left[1;3\right]\Rightarrow f\left(x\right)-g\left(x\right)=0\) có 2 nghiệm pb \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Theo Viet đảo: \(\left\{{}\begin{matrix}a=3+1\\-b=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\) \(\Rightarrow y=4x-3\Leftrightarrow4x-y-3=0\)

\(\Rightarrow A\left(1;1\right)\) ; \(B\left(3;9\right)\)

Diện tích tam giác ABM lớn nhất khi \(d\left(M;d\right)\) lớn nhất

\(d\left(M;d\right)=\frac{\left|4m-m^2-3\right|}{\sqrt{17}}=\frac{\left|m^2-4m+3\right|}{\sqrt{17}}=\frac{\left|\left(m-2\right)^2-1\right|}{\sqrt{17}}\le\frac{1}{\sqrt{17}}\)

Dấu "=" xảy ra khi \(m=2\)

DD
24 tháng 1 2022

\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)

Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì: 

\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)

\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).