\(x\) :

                                           

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

a) Để cho \(x=-3\) là nghiệm của phương trình \(f\left(x,y\right)=0\) điều kiện là :

\(\left(-6-3y+7\right)\left(-9+2y-1\right)=0\)

Phương trình tích

4 tháng 3 2020

a, \(5x+5=5x+5\)

\(0x=0\)

\(\RightarrowĐPCM\)

b, \(x^2+8x+16=x^2+8x+16\)

\(0x=0\)

\(\RightarrowĐPCM\)

4 tháng 3 2020

a, \(5\left(x+1\right)=5x+5\)

\(\Leftrightarrow5x+5=5x+5\)

Vậy phương trình đúng với mọi nghiệm \(x\in R\)

b,\(\left(x+4\right)^2=x^2+8x+16\)

\(\Leftrightarrow x^2+8x+16=x^2+8x+16\)

Vậy phương trình đúng với mọi nghiệm \(x\in R\)

22 tháng 4 2017

a) Ta có: 2² = 4 > 0 và (-3)² = 9 > 0 => x = 2; x = -3 là nghiệm của bất phương trình x² > 0
b) Ta có Với mọi x ≠ 0 thì x² > 0 và khi x = 0 thì 0² = 0 nên mọi giá trị của ẩn x không là nghiệm của bất phương trình x² > 0. tập nghiệm của bất phương trình x² > 0 là S = {x ∈ R/x ≠ 0}

= R\{0}

21 tháng 8 2016

1. Thay m = 2 vào phương trình (1) ta có.

            2x2 + 3x + 1 = 0 

Có ( a - b + c = 2 - 3 + 1 = 0)

=> Phương trình (1) có nghiệm x1 = -1 ; x2  = - 1/2

2. Phương trình (1) có   = (2m -1)2 - 8(m -1)

                                         = 4m2 - 12m + 9 = (2m - 3)2 \(\ge\) 0 với mọi m.

=> Phương trình (1) luôn có hai nghiệm x1; x2 với mọi giá trị của m.

+ Theo hệ thức Vi ét ta có 

\(\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}\) 

+ Theo điều kiện đề bài: 4x12  + 4x22  + 2x1x2 = 1

                           <=>  4(x1 + x2)2 - 6 x1x2 = 1     

                          <=>  ( 1 - 2m)2 - 3m + 3 = 1

                          <=>  4m2  - 7m + 3 = 0  

+ Có a + b + c = 0 => m1 = 1; m2 = 3/4 

Vậy với m = 1 hoặc m = 3/4 thì phương trình (1) có hai nghiệm x1; x2 thoả mãn:

4x12  + 4x22  + 2x1x2 = 1 

 

21 tháng 8 2016

hơi dư nhỉ?? để làm lại há

24 tháng 3 2018

a) x \(\in\) {2;1;0; -1; -2}

b) x \(\in\) {...; -10; -9; 9;10;...}

c) x \(\in\) {-1; -2; -3; -4; 0; 1; 2;3;4}

d) x \(\in\) {...; -9; -8; -7; 7;8;9;...}

haha

1 tháng 4 2018

a. Ta có: |x| < 3 ⇔ -3 < x < 3

Các giá trị trong tập hợp A là nghiệm của bất phương trình là:

-2; -1; 0; 1; 2

b. Ta có: |x| > 8 ⇔ x > 8 hoặc x < -8

Các giá trị trong tập hợp A là nghiệm của bất phương trình là:

-10; -9; 9; 10

c. Ta có: |x| ≤ 4 ⇔ -4 ≤ x ≤ 4

Các số trong tập hợp A là nghiệm của bất phương trình là:

-4; -3; -2; -1; 0; 1; 2; 3; 4

d. Ta có: |x| ≥ 7 ⇔ x ≥ 7 hoặc x ≤ -7

Các số trong tập hợp A là nghiệm của bất phương trình là:

-10; -9; -8; -7; 7; 8; 9; 10

22 tháng 4 2017

(Bài này mình sẽ trình bày theo cách khác, không tính cụ thể VT, VP mà thay trực tiếp giá trị vào bất phương trình.)

Lần lượt thay x = -2 vào từng bất phương trình:

a) -3x + 2 > -5 => -3(-2) + 2 > -5

=> 6 + 2 > - 5 => 8 > -5 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

b) 10 - 2x < 2 => 10 - 2.(-2) < 2

=> 10 + 4 < 2 => 14 < 2 (sai)

Vậy x = -2 không là nghiệm của bất phương trình này.

c) x2 - 5 < 1 => (-2)2 - 5 < 1

=> 4 - 5 < 1 => -1 < 1 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

d) |x| < 3 => |-2| < 3 => 2 < 3 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

e) |x| > 2 => |-2| > 2 => 2 > 2 (sai)

Vậy x = -2 không là nghiệm của bất phương trình này.

f) x + 1 > 7 - 2x => (-2) + 1 > 7 - 2(-2) => -1 > 11 (sai)

Vậy x = - 2 không là nghiệm của bất phương trình này.

25 tháng 4 2018

a) -3x + 2 > -5 => -3(-2) + 2 > -5

=> 6 + 2 > - 5 => 8 > -5 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

b) 10 - 2x < 2 => 10 - 2.(-2) < 2

=> 10 + 4 < 2 => 14 < 2 (sai)

Vậy x = -2 không là nghiệm của bất phương trình này.

c) x\(^2\) - 5 < 1 => (-2)\(^2\)- 5 < 1

=> 4 - 5 < 1 => -1 < 1 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

d) |x| < 3 => |-2| < 3 => 2 < 3 (đúng)

Vậy x = -2 là nghiệm của bất phương trình này.

e) |x| > 2 => |-2| > 2 => 2 > 2 (sai)

Vậy x = -2 không là nghiệm của bất phương trình này.

f) x + 1 > 7 - 2x => (-2) + 1 > 7 - 2(-2) => -1 > 11 (sai)

Vậy x = - 2 không là nghiệm của bất phương trình này.

5 tháng 5 2017

a. \(x-2=3m+4\)

\(\Leftrightarrow x=3m+6\)

Để nghiệm của phương trình là \(x>3\) thì \(3m+6>3\Leftrightarrow3m>-3\Leftrightarrow m>-1\)

Vậy với \(m>-1\) thì nghiệm của phương trình \(x-2=3m+4\) lớn hơn 3.

b.\(3-2x=m-5\)

\(\Leftrightarrow-2x=m-8\)

\(\Leftrightarrow x=\dfrac{8-m}{2}\)

Để nghiệm của phương trình là \(x< -2\) thì \(\dfrac{8-m}{2}< -2\Leftrightarrow8-m< -4\Leftrightarrow m>12\)

Vậy với \(m>12\) thì phương trình \(3-2x=m-5\) có nghiệm nhỏ hơn -2