K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Cô bố sung cách cm khác ở phân cuối của Ngọc. Cô thấy rằng nó logic hơn, vì phần lập luận dòng cuối của Ngọc có vẻ chưa rõ ràng :)

Sau khi biến đổi đc về dạng \(t^2+t-m\ge0\), áp dụng định lý về dấu tam thức bậc hai ta có:

\(\hept{\begin{cases}1>0\\\Delta< 0\end{cases}\Leftrightarrow1^2+4m< 0\Leftrightarrow m< -\frac{1}{4}}\)

Vậy m nguyên lớn nhất là  -1.

13 tháng 7 2016

Ta có : \(\left(x+1\right)\left(x+2\right)^2\left(x+3\right)\ge m\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+3\right)\right].\left(x+2\right)^2\ge m\)

\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x+4\right)\ge m\)

Đặt \(t=x^2+4x+3\) \(\Rightarrow t\left(t+1\right)\ge m\Leftrightarrow t^2+t-m\ge0\)

\(\Leftrightarrow\left(t^2+2.t.\frac{1}{2}+\frac{1}{4}\right)-\left(m+\frac{1}{4}\right)\ge0\Leftrightarrow\left(t-\frac{1}{2}\right)^2-\left(m+\frac{1}{4}\right)\ge0\)

Ta có \(\left(t-\frac{1}{2}\right)^2\ge0\Rightarrow m+\frac{1}{4}\le0\Rightarrow m\le-\frac{1}{4}\)

Mà m là số nguyên lớn nhất nên m = -1.

Vậy m = -1 thoả mãn đề bài.

23 tháng 9 2020
https://i.imgur.com/QBCcqpP.jpg
23 tháng 9 2020

Đặt 2 ra ngoài thì đỡ phải dùng căn đó bnbanhqua

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$

$=(x+\frac{1}{2})^2+\frac{3}{4}$

$\geq 0+\frac{3}{4}$

$> 0$

Ta có đpcm.

13 tháng 11 2016

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right) \Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)(1)

Đặt \(t=\frac{x}{y}+\frac{y}{x}\), (1) trở thành \(t^2-3t+2\ge0\)(2)

(2) đúng khi \(t\le1\)hoặc \(t\ge2\), chú ý rằng theo bất đẳng thức AM - GM, ta có:

\(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\)với x,y > 0 

Do đó (2) đúng, suy ra (1) đúng ( đpcm ).

12 tháng 11 2016

Đề đúng không thế bạn. 3 hay là 2 thế