\(x,y,z\) thỏa mãn điều kiện \(x^2+y^2+z^2=2016\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Ta có:

\(\left\{{}\begin{matrix}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\\2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\end{matrix}\right.\)

Cộng theo vế cá BĐT trên ta có:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)

\(\Rightarrow3\left[\left(x^2+y^2+z^2\right)+1\right]\ge12\)

\(\Rightarrow\left(x^2+y^2+z^2\right)+1\ge4\Rightarrow P\ge3\)

7 tháng 3 2017

Cảm ơn nhiều ạ eoeoeoeo

30 tháng 8 2020

Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)

Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về 

\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)

Sử dụng BĐT AM-GM ta có :

\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)

Bằng cách chứng minh tương tự ta được :

\(b^4+c^4+c^4+1\ge4bc^2\)\(c^4+a^4+a^4+1\ge4ca^2\)

Cộng theo vế các bđt cùng chiều ta được :

\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)

\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)

\(< =>a^4+b^4+c^4\ge4-1=3\)

Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)

3 tháng 3 2018

mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

8 tháng 12 2019

\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\Leftrightarrow xy+yz+zx=0\left(\text{vì:}x^2+y^2+z^2=9\right)\)

\(xy+yz+zx=0\Rightarrow xy=-yz-zx;yz=-xy-xz;xz=-xy-yz\)

\(P=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(z+x\right)}{y^2}+\frac{-z\left(x+y\right)}{z}-4=\frac{y+z}{-x}+\frac{z+y}{-y}+\frac{x+y}{-z}-4\)

\(P=\frac{3}{x}+\frac{3}{y}+\frac{3}{z}-1=\frac{3yz+3xz+3xy}{xyz}-1=0-1=-1\)

8 tháng 12 2019

Mk k hiểu dòng cuối