\(\frac{1}{x}\)+ \(\frac{1}{y}+\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(=>\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3=0\)

\(=>\left(\frac{1}{x}+\frac{1}{y}\right)^3+\frac{1}{z^3}+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).\left(\frac{1}{x}+\frac{1}{y}\right)\frac{1}{z}=0\)

\(=>\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}+3\left(\frac{1}{x}+\frac{1}{y}\right)\frac{1}{xy}+3.0.\frac{1}{z}=0\)(do\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

\(=>\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}+3.\left(\frac{1}{x}+\frac{1}{y}\right)\frac{1}{xy}=0\)\(\left(1\right)\)

Mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)\(\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-3\frac{1}{xyz}=0\)

\(=>\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3\frac{1}{xyz}\)

Thay vào P ta có:

\(P=\frac{2013xyz}{3}.3.\frac{1}{xyz}=2017\)

12 tháng 10 2016

Ta có: x+y+z=0

Suy ra: x+y=-z; y+z=-x; z+x=-y

ta có: \(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

                                                                  \(=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}\)

                                                                   \(=-1\)

NV
15 tháng 3 2019

\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+z^3\)

\(=\left(\frac{1}{x}+\frac{1}{y}\right)^3+\frac{1}{z^3}-\frac{3}{xy}\left(\frac{-1}{z}\right)\) (do \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\))

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[\left(\frac{1}{x}+\frac{1}{y}\right)^2-\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{z}+\frac{1}{z^2}\right]+\frac{3}{xyz}\)

\(=\frac{3}{xyz}\)

\(\Rightarrow P=\frac{2017}{3}.xyz.\frac{3}{xyz}=2017\)

15 tháng 3 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}=-\left(\frac{1}{y}+\frac{1}{z}\right).P=\frac{2017}{3}xyz\left[-\left(\frac{1}{y}+\frac{1}{z}\right)^3+\frac{1}{y^3}+\frac{1}{z^3}\right]=-\frac{2017}{3}xyz\left(\frac{3}{yz^2}+\frac{3}{zy^2}\right)=-2017xyz\left(\frac{z+y}{z^2y^2}\right)=-2017\left(\frac{xyz^2+xy^2z}{y^2z^2}\right)=-2017\left(\frac{x}{y}+\frac{x}{z}\right)=-2017x\left(\frac{1}{y}+\frac{1}{z}\right)=-2017.\left(-\frac{1}{x}\right)x=2017\)

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

19 tháng 11 2016

Ta có 

a3 + b3 + c3 - 3abc = 0

<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0

<=> (a + b + c)(a2 + b2 + c2 + 2ab - ac - bc) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> (a2 + b2 + c2 - ab - ac - bc) = 0

<=> (a2 - 2ab + b2) + (a2 - 2ac - c2) + (b2 - 2bc + c2) = 0

<=> (a - b)2 + (a - c)2 + (b - c)2 = 0

<=> a = b = c

=> P = (1 + 1)(1 + 1)(1 +1) = 8