Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x,y,z \(\in\)Z ,nên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow A>1\)
\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)
\(\Rightarrow B>1\)
Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1
Do đó A < 2.Vậy 1 < A < 2
=> A có giá trị là 1 số không thuộc tập hợp số nguyên
Lời giải:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow \frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Leftrightarrow \frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
\(\Leftrightarrow \frac{y+z}{x}+1=\frac{z+x}{y}+1=\frac{x+y}{z}+1\)
\(\Leftrightarrow \frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}(*)\)
Nếu \(x+y+z=0\)
\(\Rightarrow x+y=-z; y+z=-x; z+x=-y\)
\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{yzx}=\frac{(-z)(-x)(-y)}{yzx}=-1\)
Nếu $x+y+z\neq 0$. Khi đó từ $(*)$ suy ra $x=y=z$
\(\Rightarrow B=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+\frac{x}{x})(1+\frac{x}{x})(1+\frac{x}{x})=(1+1)(1+1)(1+1)=8\)
Vậy................
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\\z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Leftrightarrow\frac{1}{\left(xyz\right)^2}=1\Rightarrow xyz=\pm1\)(đpcm)
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-