Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét a=1,b=4,c=9 thì P=0
Xét \(a>1,b>4,c>9\)
Áp dụng BĐT AM-GM ta có:
\(P=\frac{bc.\sqrt{a-1}.1+\frac{ca}{2}.\sqrt{b-4}.2+\frac{ab}{3}.\sqrt{c-9}.3}{abc}\)
\(\le\frac{bc.\frac{a-1+1}{2}+\frac{ca}{2}.\frac{b-4+4}{2}+\frac{ab}{3}.\frac{c-9+9}{2}}{abc}\)
\(=\frac{\frac{abc}{2}+\frac{abc}{4}+\frac{abc}{6}}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)
Nên GTLN của P là \(\frac{11}{12}\) đạt được khi \(\hept{\begin{cases}\sqrt{a-1}=1\\\sqrt{b-4}=2\\\sqrt{c-9}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a-1=1\\b-4=4\\c-9=9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=8\\c=18\end{cases}}\)
\(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)
Vì \(a\ge1;b\ge4;c\ge9\). Áp dụng BĐT Cosi cho các số dương ta được:
\(\sqrt{a-1}=1\cdot\sqrt{a-1}\le\frac{1+a-1}{2}=\frac{a}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{a-1}=1\Leftrightarrow a=2\)
\(\sqrt{b-4}=2\cdot\sqrt{b-4}\le\frac{4+b-4}{2}=\frac{b}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{b-4}=2\Leftrightarrow b=8\)
\(\sqrt{c-9}=3\cdot\sqrt{c-9}\le\frac{9+c-9}{2}=\frac{c}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{c-9}=3\Leftrightarrow c=18\)
\(\Rightarrow P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\le\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{3}{2}\)
Vậy GTLN của P\(=\frac{3}{2}\Leftrightarrow a=2;b=8;c=18\)
Áp dụng bất đẳng thức Cô-si, ta được: \(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)\(=\frac{bc\sqrt{\left(a-1\right).1}+\frac{1}{2}ca\sqrt{4.\left(b-4\right)}+\frac{1}{3}ab\sqrt{9.\left(c-9\right)}}{abc}\)\(\le\frac{bc.\frac{\left(a-1\right)+1}{2}+\frac{1}{2}ca.\frac{4+\left(b-4\right)}{2}+\frac{1}{3}ab.\frac{9+\left(c-9\right)}{2}}{abc}\)\(=\frac{\frac{1}{2}abc+\frac{1}{4}abc+\frac{1}{6}abc}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)
Đẳng thức xảy ra khi a = 2; b = 8; c = 18
\(P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}=\frac{\sqrt{\left(a-1\right)\cdot1}}{a}+\frac{1}{2}\cdot\frac{\sqrt{\left(b-4\right)\cdot4}}{b}+\frac{1}{3}\cdot\frac{\sqrt{\left(c-9\right)\cdot9}}{c}\)
\(\Rightarrow P\le\frac{\frac{a-1+1}{2}}{a}+\frac{1}{2}\cdot\frac{\frac{b-4+4}{2}}{b}+\frac{1}{3}\cdot\frac{\frac{c-9+9}{2}}{c}\)
\(\Rightarrow P\le\frac{a}{2a}+\frac{b}{4b}+\frac{c}{6c}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=18\end{matrix}\right.\)
Ta có:
\(bc\sqrt{1\left(a-1\right)}\le bc.\frac{1+a-1}{2}=\frac{abc}{2}\)
\(ca\sqrt{b-4}=\frac{1}{2}ca\sqrt{4\left(b-4\right)}\le\frac{1}{2}ca.\frac{4+b-4}{2}=\frac{abc}{4}\)
\(ab\sqrt{c-9}=\frac{1}{3}ab.\sqrt{9\left(c-9\right)}\le\frac{1}{3}ab.\frac{9+c-9}{2}=\frac{abc}{6}\)
Từ đó suy ra \(P\le\frac{abc\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}\right)}{abc}=\frac{11}{12}\)
Đẳng thức xảy ra khi a = 2; b = 8; c = 18
Is that true?
\(P=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(c+a\right)\left(a+b\right)}}+\frac{ca}{\sqrt{\left(b+c\right)\left(a+b\right)}}\)
thử dùng cô si đi
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)