Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay 1= 4(ab+bc+ca), Ta có:
\(\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)
\(=4\left(ab+bc+ca+a^2\right).4\left(ab+bc+ca+b^2\right).4\left(ab+bc+ca+c^2\right)\)
\(=64.\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)\)
\(=64\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(=\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Mà a, b, c là số hữu tỉ
\(\Rightarrow\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)là bình phương một số hữu tỉ
\(\Rightarrow\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)là bình phương một số hữu tỉ
Từ giả thiết ta suy ra \(\hept{\begin{cases}abc-ab-bc-ac=0\\a+b+c-1=0\end{cases}}\)
\(\Rightarrow\left(abc-ab-bc-ac\right)+\left(a+b+c-1\right)=0\)
\(\Leftrightarrow\left(abc-ab\right)-\left(ac-a\right)-\left(bc-b\right)+\left(c-1\right)=0\)
\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+\left(c-1\right)=0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Rightarrow\) Ít nhất một trong các số a;b;c phải bằng 1 (đpcm)
Đặt \(S=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)
Ta dễ có
\(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{1}{2}\left(a+b\right)\)
Sử dụng phép tương tự khi đó:
\(S\le\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
\(\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=3\)
Đẳng thức xảy ra tại a=b=c=1
\(ab+bc+ac=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$
$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$