\(\left\{{}\begin{matrix}a+b+c=9\\a^2+b^2+c^2=27\end{matrix}\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2018

Lời giải:

Có: \(\left\{\begin{matrix} a+b+c=9\\ a^2+b^2+c^2=27\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (a+b+c)^2=81\\ a^2+b^2+c^2=27\end{matrix}\right.\)

\(\Rightarrow (a+b+c)^2-(a^2+b^2+c^2)=54\)

\(\Leftrightarrow 2(ab+bc+ac)=54\Leftrightarrow ab+bc+ac=27\)

Do đó: \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=0(*)\)

Ta thấy: \((a-b)^2; (b-c)^2; (c-a)^2\geq 0\forall a,b,c\in\mathbb{R}\)

Suy ra \((*)\) xảy ra khi và chỉ khi

\((a-b)^2=(b-c)^2=(c-a)^2=0\Leftrightarrow a=b=c\)

Khi đó: \(a=b=c=\frac{9}{3}=3\) (thỏa mãn)

\(P=(a-2)^{2015}+(b-3)^{2016}+(c-4)^{2017}=1^{2015}+0^{2016}+(-1)^{2017}\)

\(P=1+0+(-1)=0\)

NV
11 tháng 6 2020

\(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)

\(27=a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\Rightarrow\left(a+b+c\right)^2\le81\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=3\)

\(\Rightarrow P=1^{2015}+0^{2016}-1^{2017}=0\)

3 tháng 7 2019

Ta có \(a^3+b^3+c^3=3abc\)

=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a+b+c\ne0\)

=> \(a^2+b^2+c^2-ab-bc-ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Do \(VT\ge0\)

=> a=b=c

Thay vào ta được

P=2018^3

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

17 tháng 5 2018

Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)

\(\Rightarrow a=2014k;b=2015k;c=2016k\)

\(\Rightarrow4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)\)

\(\Rightarrow4\cdot k(2014-2015)\cdot k(2015-2016)=4\cdot k\cdot(-1)\cdot k\cdot(-1)=4\cdot k^2\)

\(\Rightarrow(c-a)(c-a)=(c-a)^2=(2016k-2014k)=[k(2016-2014)]^2=(k\cdot2)^2=k^{2\cdot4}\)

Rồi tự suy ra đấy

Bạn Namikaze Minato làm đúng rồi đấy

17 tháng 5 2018

\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}\)

\(=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)

\(=\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow a-b=-\frac{c-a}{2};b-c=-\frac{c-a}{2}\)

do đó: \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2=0\)

NV
11 tháng 2 2020

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

11 tháng 2 2020

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

Y
20 tháng 5 2019

gt \(\Rightarrow\left\{{}\begin{matrix}b\left(a^2+2ac+c^2\right)+ac\left(a+c\right)+b^2\left(a+c\right)=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+c\right)\left[b\left(a+c\right)+ac+b^2\right]=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\\a^{2013}+b^{2013}+c^{2013}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a+b=0\Rightarrow a^{2013}+b^{2013}=0\\b+c=0\Rightarrow b^{2013}+c^{2013}=0\\a+c=0\Rightarrow a^{2013}+c^{2013}=0\end{matrix}\right.\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)

\(\Rightarrow Q=1\)

Bìa 1: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\) Bài 2: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b)...
Đọc tiếp

Bìa 1: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

Bài 2: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

Bài 3: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\\\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=\dfrac{3}{8}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4\left|x-1\right|+3\left|y+2\right|=7\end{matrix}\right.\)

Bài 4: Cho hệ phương trình \(\left\{{}\begin{matrix}\left(3a-2\right)x+2\left(2b+1\right)y=30\\\left(a+2\right)x-2\left(3b-1\right)y=-20\end{matrix}\right.\) Tìm các giá trị của a,b để hệ phương trình có nghiệm (3;-1)

cảm ơn mn trước ạ ! hehe

2
12 tháng 1 2019

3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))

Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)

b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)

31 tháng 12 2022

Bài 4:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)

=>9a-6-4b-2=30 và 3a+6+6b-2=-20

=>9a-4b=38 và 3a+6b=-20+2-6=-24

=>a=2; b=-5

5 tháng 11 2018

a + b + c = 6

=> (a + b + c)2 = 36

<=> a2 + b2 + c2 + 2(ab + bc + ca) = 36

<=> a2 + b2 + c2 = 36 - 2.12 = 12

<=> a2 + b2 + c2 = ab + bc + ca

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

=> a = b = c = 2

P = (a - 3)2018 + (b - 3)2018 + (c - 3)2018 = (-1)2018 + (-1)2018 + (-1)2018 = 1 + 1 + 1 = 3